组队学习第一天:心跳信号分类之baseline学习

组队学习第一天:心跳信号分类之baseline学习

原题目地址:零基础入门数据挖掘-心跳信号分类预测
本文是鸣鹤星空小组组队学习的集体成果。
id:李由,一只小呆

任务要求

  • 理解赛题数据和目标,清楚评分体系。
  • 完成赛题报名和数据下载,理解赛题的解题思路。
  • 学习baseline方案,并成功运行提交结果。

题目描述

赛题背景

赛题以医疗数据挖掘为背景,要求选手使用提供的心跳信号传感器数据训练模型并完成不同心跳信号的分类的任务。为了更好的引导大家入门,还特别为本赛题定制了学习方案,其中包括数据科学库、通用流程和baseline方案学习三部分。

通过对本方案的完整学习,可以帮助掌握数据竞赛基本技能。同时我们也将提供专属的视频直播学习通道。

赛题数据和评测标准

  • 赛题数据
    赛题以预测心电图心跳信号类别为任务,数据集报名后可见并可下载,该数据来自某平台心电图数据记录,总数据量超过20万,主要为1列心跳信号序列数据,其中每个样本的信号序列采样频次一致,长度相等。为了保证比赛的公平性,将会从中抽取10万条作为训练集,2万条作为测试集A,2万条作为测试集B,同时会对心跳信号类别(label)信息进行脱敏。

字段表

FieldDescription
id为心跳信号分配的唯一标识
heartbeat_signals心跳信号序列
label心跳信号类别(0、1、2、3)
  • 评测标准
    选手需提交4种不同心跳信号预测的概率,选手提交结果与实际心跳类型结果进行对比,求预测的概率与真实值差值的绝对值(越小越好)。
    具体计算公式如下:
    针对某一个信号,若真实值为 [ y 1 . y 2 , y 3 , y 4 ] [y_1.y_2,y_3,y_4] [y1.y2,y3,y4],模型预测概率值为 [ a 1 , a 2 , a 3 , a 4 ] [a_1,a_2,a_3,a_4] [a1,a2,a3,a4],那么该模型的平均指标 a b s − s u m abs-sum abssum
    a b s − s u m = ∑ i = 1 n ∑ i = 1 4 ∣ y i − a i ∣ abs-sum = \sum^n_{i=1}\sum^4_{i=1}|y_i-a_i| abssum=i=1ni=14yiai

解题思路例如,心跳信号为1,会通过编码转成 [ 0 , 1 , 0 , 0 ] [0,1,0,0] [0,1,0,0],预测不同心跳信号概率为 [ 0.1 , 0.7 , 0.1 , 0.1 ] [0.1,0.7,0.1,0.1] [0.1,0.7,0.1,0.1],那么这个预测结果的 a b s − s u m abs-sum abssum
a b s − s u m = ∣ 0.1 − 0 ∣ + ∣ 0.7 − 1 ∣ + ∣ 0.1 − 0 ∣ + ∣ 0.1 − 0 ∣ = 0.6 {abs-sum={ \left| {0.1-0} \right| }+{ \left| {0.7-1} \right| }+{ \left| {0.1-0} \right| }+{ \left| {0.1-0} \right| }=0.6} abssum=0.10+0.71+0.10+0.10=0.6

  • 结果提交
    提交前请确保预测结果的格式与sample_submit.csv中的格式一致,以及提交文件后缀名为csv。

形式如下:

id,label_0,label_1,label_2,label_3
100000,0,0,0,0
100001,0,0,0,0
100002,0,0,0,0
100003,0,0,0,0

baseline方案及运行结果

1.导入第三方包

import os
import gc #垃圾回收
import math

import pandas as pd
import numpy as np

import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor, LinearRegression, Ridge
from sklearn.preprocessing import MinMaxScaler


from sklearn.model_selection import StratifiedKFold, KFold 
#交叉验证,代码中的KFold:交叉验证经常用于数据的验证,原理是将数据分为 n 组,每组数据都要作为一次验证集进行一次验证,而其余的 n-1 组数据作为训练集。这样一共要循环 n 次,验证 n 次,得到 n 个模型,这 n 个模型得到的 n 个误差计算均值,得到交叉验证误差。
from sklearn.metrics import log_loss #对数损失函数
from sklearn.model_selection import train_test_split #切分训练集和测试集
from sklearn.preprocessing import OneHotEncoder #利用onehot算法的编码器

from tqdm import tqdm
import matplotlib.pyplot as plt
import time
import warnings
warnings.filterwarnings('ignore')

2.读取数据

train = pd.read_csv('train.csv')
test=pd.read_csv('testA.csv')
train.head()
idheartbeat_signalslabel
00.9912297987616655,0.9435330436439665,0.764677…0.0
10.9912297987616655,0.9435330436439665,0.764677…0.0
21.0,0.9591487564065292,0.7013782792997189,0.23…2.0
30.9757952826275774,0.9340884687738161,0.659636…0.0
40.0,0.055816398940721094,0.26129357194994196,0…2.0
test.head()
idhearbeat_signals
1000000.9915713654170097,1.0,0.6318163407681274,0.13…
1000010.6075533139615096,0.5417083883163654,0.340694…
1000020.9752726292239277,0.6710965234906665,0.686758…
1000030.9956348033996116,0.9170249621481004,0.521096…
1000041.0,0.8879490481178918,0.745564725322326,0.531…

3.数据预处理

def reduce_mem_usage(df):
#传入数据容器根据每列数据类型将其内存降至最低
    start_mem = df.memory_usage().sum() / 1024**2 #计算原有数据大小
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            #尽量缩小列的类型占有内存
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category') #默认类型

    end_mem = df.memory_usage().sum() / 1024**2 #输出优化后大小
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df
# 简单预处理
# 测试集
train_list = []

for items in train.values:
    train_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])#将信号列按照逗号拆分成数个浮点类型的列

train = pd.DataFrame(np.array(train_list))
train.columns = ['id'] + ['s_'+str(i) for i in range(len(train_list[0])-2)] + ['label']#命名数据容器的列名
train = reduce_mem_usage(train)#调用上面函数降低数据容器的内存

# 训练集
test_list=[]
for items in test.values:
    test_list.append([items[0]] + [float(i) for i in items[1].split(',')])

test = pd.DataFrame(np.array(test_list))
test.columns = ['id'] + ['s_'+str(i) for i in range(len(test_list[0])-1)]
test = reduce_mem_usage(test)
Memory usage of dataframe is 157.93 MB
Memory usage after optimization is: 39.67 MB
Decreased by 74.9%
Memory usage of dataframe is 31.43 MB
Memory usage after optimization is: 7.90 MB
Decreased by 74.9%

4.训练数据/测试数据准备


x_train = train.drop(['id','label'], axis=1)# 只取了信号值的列
y_train = train['label']# 取了测试集的标签
x_test=test.drop(['id'], axis=1)# 取了测试集的信号列和标签列

5.模型训练

def abs_sum(y_pre,y_tru):# 计算预测标签和真实标签之间差的绝对值并求和
    y_pre=np.array(y_pre)
    y_tru=np.array(y_tru)
    loss=sum(sum(abs(y_pre-y_tru)))
    return loss
def cv_model(clf, train_x, train_y, test_x, clf_name):#
    folds = 5 #交叉验证取5组
    seed = 2021 #随机分组的种子
    kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
    test = np.zeros((test_x.shape[0],4))#预测结果的矩阵,先行初始化为全零矩阵

    cv_scores = []
    onehot_encoder = OneHotEncoder(sparse=False)
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):#返回kfolds训练集和验证集的索引
        print('************************************ {} ************************************'.format(str(i+1)))
        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]#取出训练集和验证集的信号值和label值
        
        if clf_name == "lgb":
            train_matrix = clf.Dataset(trn_x, label=trn_y)
            valid_matrix = clf.Dataset(val_x, label=val_y)

            params = {
                'boosting_type': 'gbdt',# 设置提升类型
                'objective': 'multiclass',# 多分类任务,目标函数
                'num_class': 4,#分类类别个数
                'num_leaves': 2 ** 5,#叶子节点个数
                'feature_fraction': 0.8,#建树的特征选择比例
                'bagging_fraction': 0.8,#建树的样本采样比例
                'bagging_freq': 4,#每几次迭代执行bagging
                'learning_rate': 0.1,#学习率
                'seed': seed,#随机种子
                'nthread': 28,#进程数
                'n_jobs':24,#待查
                'verbose': -1,#警告等级:仅显示致命错误
            }

            model = clf.train(params, 
                      train_set=train_matrix, 
                      valid_sets=valid_matrix, 
                      num_boost_round=2000, #最大迭代次数
                      verbose_eval=100, #每隔离100次输出一个评估结果
                      early_stopping_rounds=200)
            val_pred = model.predict(val_x, num_iteration=model.best_iteration)
            test_pred = model.predict(test_x, num_iteration=model.best_iteration) 
            
        val_y=np.array(val_y).reshape(-1, 1)
        val_y = onehot_encoder.fit_transform(val_y)
        print('预测的概率矩阵为:')
        print(test_pred)
        test += test_pred
        score=abs_sum(val_y, val_pred)
        cv_scores.append(score)
        print(cv_scores)
    print("%s_scotrainre_list:" % clf_name, cv_scores)
    print("%s_score_mean:" % clf_name, np.mean(cv_scores))
    print("%s_score_std:" % clf_name, np.std(cv_scores))
    test=test/kf.n_splits

    return test
def lgb_model(x_train, y_train, x_test):
    lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
    return lgb_test
lgb_test = lgb_model(x_train, y_train, x_test)
************************************ 1 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0525735
[200]	valid_0's multi_logloss: 0.0422444
[300]	valid_0's multi_logloss: 0.0407076
[400]	valid_0's multi_logloss: 0.0420398
Early stopping, best iteration is:
[289]	valid_0's multi_logloss: 0.0405457
预测的概率矩阵为:
[[9.99969791e-01 2.85197261e-05 1.00341946e-06 6.85357631e-07]
 [7.93287264e-05 7.69060914e-04 9.99151590e-01 2.00810971e-08]
 [5.75356884e-07 5.04051497e-08 3.15322414e-07 9.99999059e-01]
 ...
 [6.79267940e-02 4.30206297e-04 9.31640185e-01 2.81516302e-06]
 [9.99960477e-01 3.94098074e-05 8.34030725e-08 2.94638661e-08]
 [9.88705846e-01 2.14081630e-03 6.67418381e-03 2.47915423e-03]]
[607.0736049372186]
************************************ 2 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0566626
[200]	valid_0's multi_logloss: 0.0450852
[300]	valid_0's multi_logloss: 0.044078
[400]	valid_0's multi_logloss: 0.0455546
Early stopping, best iteration is:
[275]	valid_0's multi_logloss: 0.0437793
预测的概率矩阵为:
[[9.99991401e-01 7.69109547e-06 6.65504756e-07 2.42084688e-07]
 [5.72380482e-05 1.32812809e-03 9.98614607e-01 2.66534396e-08]
 [2.82123411e-06 4.13195205e-07 1.34026965e-06 9.99995425e-01]
 ...
 [6.96398024e-02 6.52459907e-04 9.29685742e-01 2.19960932e-05]
 [9.99972366e-01 2.75069005e-05 7.68142933e-08 5.07415018e-08]
 [9.67263676e-01 7.26154408e-03 2.41533542e-02 1.32142531e-03]]
[607.0736049372186, 623.4313863731124]
************************************ 3 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0498722
[200]	valid_0's multi_logloss: 0.038028
[300]	valid_0's multi_logloss: 0.0358066
[400]	valid_0's multi_logloss: 0.0361478
[500]	valid_0's multi_logloss: 0.0379597
Early stopping, best iteration is:
[340]	valid_0's multi_logloss: 0.0354344
预测的概率矩阵为:
[[9.99972032e-01 2.62406774e-05 1.17282152e-06 5.54230651e-07]
 [1.05242811e-05 6.50215805e-05 9.99924453e-01 6.93812546e-10]
 [1.93240868e-06 1.10384984e-07 3.76773426e-07 9.99997580e-01]
 ...
 [1.34894410e-02 3.84569683e-05 9.86471555e-01 5.46564350e-07]
 [9.99987431e-01 1.25532882e-05 1.03902298e-08 5.46727770e-09]
 [9.78722948e-01 1.06329839e-02 6.94192038e-03 3.70214810e-03]]
[607.0736049372186, 623.4313863731124, 508.02381607269535]
************************************ 4 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0564768
[200]	valid_0's multi_logloss: 0.0448698
[300]	valid_0's multi_logloss: 0.0446719
[400]	valid_0's multi_logloss: 0.0470399
Early stopping, best iteration is:
[250]	valid_0's multi_logloss: 0.0438853
预测的概率矩阵为:
[[9.99979692e-01 1.70821979e-05 1.27048476e-06 1.95571841e-06]
 [5.66207785e-05 4.02275314e-04 9.99541086e-01 1.82828519e-08]
 [2.62267451e-06 3.58613522e-07 4.78645006e-06 9.99992232e-01]
 ...
 [4.56636552e-02 5.69497433e-04 9.53758468e-01 8.37980573e-06]
 [9.99896785e-01 1.02796802e-04 2.46636563e-07 1.72061021e-07]
 [8.70911669e-01 1.73790185e-02 1.04478175e-01 7.23113697e-03]]
[607.0736049372186, 623.4313863731124, 508.02381607269535, 660.4867407547267]
************************************ 5 ************************************
[LightGBM] [Warning] num_threads is set with nthread=28, will be overridden by n_jobs=24. Current value: num_threads=24
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0506398
[200]	valid_0's multi_logloss: 0.0396422
[300]	valid_0's multi_logloss: 0.0381065
[400]	valid_0's multi_logloss: 0.0390162
[500]	valid_0's multi_logloss: 0.0414986
Early stopping, best iteration is:
[324]	valid_0's multi_logloss: 0.0379497
预测的概率矩阵为:
[[9.99993352e-01 6.02902202e-06 1.13002685e-07 5.06277302e-07]
 [1.03959552e-05 5.03778956e-04 9.99485820e-01 5.07638601e-09]
 [1.92568065e-07 5.07155306e-08 4.94690856e-08 9.99999707e-01]
 ...
 [8.83103121e-03 2.51969353e-05 9.91142776e-01 9.96143937e-07]
 [9.99984791e-01 1.51997858e-05 5.62426491e-09 3.80450197e-09]
 [9.86084001e-01 8.75968498e-04 1.09742304e-02 2.06580027e-03]]
[607.0736049372186, 623.4313863731124, 508.02381607269535, 660.4867407547267, 539.2160054696063]
lgb_scotrainre_list: [607.0736049372186, 623.4313863731124, 508.02381607269535, 660.4867407547267, 539.2160054696063]
lgb_score_mean: 587.646310721472
lgb_score_std: 55.94453640571462

6.预测结果

temp=pd.DataFrame(lgb_test)
result=pd.read_csv('sample_submit.csv')
result['label_0']=temp[0]
result['label_1']=temp[1]
result['label_2']=temp[2]
result['label_3']=temp[3]
result.to_csv('submit.csv',index=False)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值