机器学习基本概念

机器学习基本概念

机器学习方法流程

机器学习方法流程.png

输入与输出空间

输入空间:将输入所有可能取值的集合称为输入空间
输出空间:将输出所有可能取值的集合称为输出空间

通过父亲身高推测儿子的身高

则父亲身高所有可能取值的集合就是输入空间
儿子身高所以可能取值的集合就是输出空间
image.png

泰坦尼克生还预测

image.png
输入空间是由多个纬度组成
Survived就是输出空间

  1. 输入空间和输出空间可以是有限元素的集合,也可以是整个欧式空间
  2. 输入空间和输出空间可以是连续值集合也可以是离散值集合
  3. 输入空间和输出空间可以是同一个空间,也可以是不同空间
  4. 通常输出空间会比输入空间小

特征空间

特征:就是属性,输入的实例的各个组成部分(属性)叫做原始特征(原始值),基于原始特征可以扩展出更多的衍生特征。
特征向量:有多个特征组成的集合叫做特征向量。

身高预测
image.png

泰坦尼克预测
image.png

特征空间:将特征向量存在的空间称为特征空间。

若只输入sex age 则特征空间就是sex age所有组合的取值

image.png
还可以通过票价衍生出票的种类 c_level就是衍生特征
image.png

  1. 特征空间中每一维都对应了一个特征(属性)
  2. 特征空间可以和输入空间相同也可以不同
  3. 需要将实例从输入空间映射到特征空间中
  4. 模型实际上定义于特征空间之上的

假设空间

假设空间:输入空间到输出空间映射的集合

下面找了几个机器学习书上的解释

监督学习的目的在于学习一个由输入到输出的映射,这一映射由模型来表示。 换句话说,学习的目的就在于找到最好的这样的模型。模型属于由输入空间到输出空间的映射集合,这个集合就是假设空间。假设空间的确定意味着学习范围的确定。 --李航 《统计学习方法》

假设空间指的是问题所有假设组成的空间,我们可以把学习过程看作是在假设空间中搜索的过程,搜索目标是寻找与训练集“匹配”的假设。 --周志华《机器学习》

例如 某商品的浏览、购买记录中, 记录了性别、信用度及是否购买,基于数据建模。其中Gender取值为{ Female,Male }Credit取值为{ High, Mediun, Low},Buy的取值为{ TRUE, FALSE}
数据如下图
image.png

Gender Credit为输入空间
Buy 为输出空间

输入空间中所有可能出现的组合为 2*3=6
列表如下

GenderCredit
FemaleHigh
FemaleMediun
FemaleLow
MaleHigh
MaleMediun
MaleLow

上述每种组合的结果都可能有两个 TRUE, FALSE

GenderCreditBuy
FemaleHighTRUE
FemaleHighFALSE
FemaleMediunTRUE
FemaleMediunFALSE
FemaleLowTRUE
FemaleLowFALSE
MaleHighTRUE
MaleHighFALSE
MaleMediunTRUE
MaleMediunFALSE
MaleLowTRUE
MaleLowFALSE

上表中每种组合抽出其中一种结果,组成一个假设
例如

GenderCreditBuy
FemaleHighTRUE
FemaleMediunFALSE
FemaleLowFALSE
MaleHighTRUE
MaleMediunFALSE
MaleLowTRUE

则所有假设的个数共有 2 6 2^6 26

一般还会有一个全空的假设

所有假设的个数是 2 6 2^6 26+1

所以假设空间H中的假设个数为

image.png
M M M 为输出空间, N i N_i Ni 为输入空间

建模是为了在假设空间中找出一个最符合输入空间的假设,用此假设作为模型对新的数据进行预测
[music:1840192925]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值