第P9周:YOLOv5-Backbone模块实现

学习记录

在学习YOLOv5之前,必定要对v3和v4进行简要了解,上一周直接上手的v5,感觉有一些力不从心。这次从头来过,理清思路。

首先,要清楚YOLO系列算法主要是运用于目标检测领域。YOLO的全称是You Only Look Once,它们的结构都由输入层、卷积层、残差块、批量归一化层、激活函数层和输出层组成。其中,YOLOv3引入了一种新的结构单元——空间金字塔池化模块(Spatial Pyramid Pooling module, SPP),以提高模型的准确性。YOLOv4引入了更多改进,包括采用残差通道 attention 机制(Residual Channel Attention Mechanism, RCAM)、使用 Mish 激活函数以及更精细的训练策略等。YOLOv5在YOLOv4的基础上进一步改进了网络结构,并增加了模型的轻量化。

YOLO系列的最大亮点在于其实时性和高准确性的目标检测能力。与其他传统的两步目标检测方法相比,YOLO采取了一步到位的方法,它直接从一张图像中预测出所有的边界框和相应的类别概率。这使得YOLO可以在短时间内完成目标检测任务,大大提高了实时性。

YOLOv5的Backbone模块是一个骨干网络,用于提取图像的特征。在YOLOv5中,有两种类型的骨干网络可供选择:CSPDarknet53和Focus。

1.CSPDarknet53:这是一个基于Darknet-53的网络结构,通过添加残差连接(shortcut
connections)来提高训练速度和性能。Darknet-53由多个残差块组成,每个残差块包含两个卷积层和一个跳跃连接。此外,为了减少计算量,YOLOv5还对Darknet-53进行了一些优化,例如使用CSP(Cross Stage Partial)策略将卷积分组在一起进行计算。
2.Focus:这是一个轻量级的骨干网络,主要用于移动设备和嵌入式系统。Focus网络由多个卷积层组成,每个卷积层后面都跟着一个批归一化层和激活函数。与CSPDarknet53相比,Focus网络的结构更简单,参数更少,但性能略低。

空间金字塔池化模块(Spatial Pyramid Pooling module, SPP)是一种用于提取图像特征的池化技术,它是由何凯明等人在2016年提出的。它的主要目的是克服传统池化技术的局限性,即池化操作只关注某一特定尺度下的特征,而忽略了其他尺度下的特征。SPP模块通过将特征图分割成多个尺寸的子区域,并对每个子区域进行池化操作,将不同尺度的特征图融合在一起。这种方法可以提取到更多的上下文信息,有助于提高模型的准确性和鲁棒性。SPP模块已被广泛应用于各种计算机视觉任务中,如目标检测、语义分割和全景拼接等。

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type=‘cuda’)

2.导入数据

import os,PIL,random,pathlib

data_dir = './P3/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

[‘cloudy’, ‘rain’, ‘shine’, ‘sunrise’]

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  
    transforms.ToTensor(),          
    transforms.Normalize(           
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  
    transforms.ToTensor(),          
    transforms.Normalize(           
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225]) 
])

total_data = datasets.ImageFolder("./P3/",transform=train_transforms)
total_data

Dataset ImageFolder
Number of datapoints: 1125
Root location: ./P3/
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)

total_data.class_to_idx

{‘cloudy’: 0, ‘rain’: 1, ‘shine’: 2, ‘sunrise’: 3}

3.划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

(<torch.utils.data.dataset.Subset at 0x2c6247fd0a0>,
<torch.utils.data.dataset.Subset at 0x2c6247fd430>)

batch_size = 8

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]: torch.Size([8, 3, 224, 224])
Shape of y: torch.Size([8]) torch.int64

二、搭建包含Backbone模块的模型

1. 搭建模型

这里我将我对这个模型的理解以注释的方式体现

import torch.nn.functional as F

def autopad(k, p=None): #自动填充函数,根据卷积核大小为输入图像补零
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution(定义了一个标准卷积层)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): 
       # 卷积层,c1: 输入通道数,c2: 输出通道数, k: 卷积核大小, s: 步长, autopad: 自动填充函数,p: 填充方式,默认是k的一半
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)#归一化处理
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
    #当输入act为True时,使用SiLU激活函数;否则如果act是一个Module,则直接使用act,否则使用Identity函数,也就是不加任何激活函数。
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=3, e=0.5): # 输入通道数c1、输出通道数c2、是否使用快捷连接shortcut、分组数g和扩展因子e。
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.6):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
  #扩展因子e被设置为1.0,每个残差模块的输出通道数等于输入通道数
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    #将张量x传递给卷积层self.cv1。将卷积后结果与x进行拼接,使用torch.cat函数沿着第1个维度(dim=1)进行拼接。
    #然后重复,最后将拼接后的结果传递给全连接层self.cv3进行线性变换。返回全连接层的输出结果作为前向传播的最终输出。
class SPPF(nn.Module):
    def __init__(self, c1, c2, k=5):  
        super().__init__()
        c_ = c1 // 2  # hidden channels
        #创建两个卷积层self.cv1和self.cv2,分别用于处理输入特征图和生成输出特征图。
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore') 
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

class YOLOv5_backbone(nn.Module):#构建YOLOv5模型的骨干网络
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        #创建了两个卷积层和四个C3模块,进行一系列操作
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)#定义一个序列模型,包含三个线性层和一个ReLU激活函数。
            #第一个线性层将输入特征映射到100个特征,第二个线性层将100个特征映射到4个特征,最后一个ReLU激活函数用于增加非线性。
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
model

Using cuda device
YOLOv5_backbone(
(Conv_1): Conv(
(conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(Conv_2): Conv(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_3): C3(
(cv1): Conv(
(conv): Conv2d(128, 76, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(76, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(128, 76, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(76, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(152, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(76, 76, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(76, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(76, 76, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(76, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_4): Conv(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_5): C3(
(cv1): Conv(
(conv): Conv2d(256, 153, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(153, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(256, 153, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(153, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(306, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(153, 153, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(153, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(153, 153, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(153, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_6): Conv(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_7): C3(
(cv1): Conv(
(conv): Conv2d(512, 307, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(307, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(512, 307, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(307, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(614, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(307, 307, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(307, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(307, 307, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(307, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_8): Conv(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_9): C3(
(cv1): Conv(
(conv): Conv2d(1024, 614, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(614, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(1024, 614, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(614, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(1228, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(614, 614, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(614, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(614, 614, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(614, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(SPPF): SPPF(
(cv1): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
)
(classifier): Sequential(
(0): Linear(in_features=65536, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=4, bias=True)
)
)
import torchsummary as summary

2. 查看模型详情

import torchsummary as summary
summary.summary(model, (3, 224, 224))
    Layer (type)               Output Shape         Param #

        Conv2d-1         [-1, 64, 113, 113]           1,728
   BatchNorm2d-2         [-1, 64, 113, 113]             128
          SiLU-3         [-1, 64, 113, 113]               0
          Conv-4         [-1, 64, 113, 113]               0
        Conv2d-5          [-1, 128, 57, 57]          73,728
   BatchNorm2d-6          [-1, 128, 57, 57]             256
          SiLU-7          [-1, 128, 57, 57]               0
          Conv-8          [-1, 128, 57, 57]               0
        Conv2d-9           [-1, 76, 57, 57]           9,728
  BatchNorm2d-10           [-1, 76, 57, 57]             152
         SiLU-11           [-1, 76, 57, 57]               0
         Conv-12           [-1, 76, 57, 57]               0
       Conv2d-13           [-1, 76, 57, 57]           5,776
  BatchNorm2d-14           [-1, 76, 57, 57]             152
         SiLU-15           [-1, 76, 57, 57]               0
         Conv-16           [-1, 76, 57, 57]               0
       Conv2d-17           [-1, 76, 57, 57]          51,984
  BatchNorm2d-18           [-1, 76, 57, 57]             152
         SiLU-19           [-1, 76, 57, 57]               0
         Conv-20           [-1, 76, 57, 57]               0
   Bottleneck-21           [-1, 76, 57, 57]               0
       Conv2d-22           [-1, 76, 57, 57]           9,728
  BatchNorm2d-23           [-1, 76, 57, 57]             152
         SiLU-24           [-1, 76, 57, 57]               0
         Conv-25           [-1, 76, 57, 57]               0
       Conv2d-26          [-1, 128, 57, 57]          19,456
  BatchNorm2d-27          [-1, 128, 57, 57]             256
         SiLU-28          [-1, 128, 57, 57]               0
         Conv-29          [-1, 128, 57, 57]               0
           C3-30          [-1, 128, 57, 57]               0
       Conv2d-31          [-1, 256, 29, 29]         294,912
  BatchNorm2d-32          [-1, 256, 29, 29]             512
         SiLU-33          [-1, 256, 29, 29]               0
         Conv-34          [-1, 256, 29, 29]               0
       Conv2d-35          [-1, 153, 29, 29]          39,168
  BatchNorm2d-36          [-1, 153, 29, 29]             306
         SiLU-37          [-1, 153, 29, 29]               0
         Conv-38          [-1, 153, 29, 29]               0
       Conv2d-39          [-1, 153, 29, 29]          23,409
  BatchNorm2d-40          [-1, 153, 29, 29]             306
         SiLU-41          [-1, 153, 29, 29]               0
         Conv-42          [-1, 153, 29, 29]               0
       Conv2d-43          [-1, 153, 29, 29]         210,681
  BatchNorm2d-44          [-1, 153, 29, 29]             306
         SiLU-45          [-1, 153, 29, 29]               0
         Conv-46          [-1, 153, 29, 29]               0
   Bottleneck-47          [-1, 153, 29, 29]               0
       Conv2d-48          [-1, 153, 29, 29]          39,168
  BatchNorm2d-49          [-1, 153, 29, 29]             306
         SiLU-50          [-1, 153, 29, 29]               0
         Conv-51          [-1, 153, 29, 29]               0
       Conv2d-52          [-1, 256, 29, 29]          78,336
  BatchNorm2d-53          [-1, 256, 29, 29]             512
         SiLU-54          [-1, 256, 29, 29]               0
         Conv-55          [-1, 256, 29, 29]               0
           C3-56          [-1, 256, 29, 29]               0
       Conv2d-57          [-1, 512, 15, 15]       1,179,648
  BatchNorm2d-58          [-1, 512, 15, 15]           1,024
         SiLU-59          [-1, 512, 15, 15]               0
         Conv-60          [-1, 512, 15, 15]               0
       Conv2d-61          [-1, 307, 15, 15]         157,184
  BatchNorm2d-62          [-1, 307, 15, 15]             614
         SiLU-63          [-1, 307, 15, 15]               0
         Conv-64          [-1, 307, 15, 15]               0
       Conv2d-65          [-1, 307, 15, 15]          94,249
  BatchNorm2d-66          [-1, 307, 15, 15]             614
         SiLU-67          [-1, 307, 15, 15]               0
         Conv-68          [-1, 307, 15, 15]               0
       Conv2d-69          [-1, 307, 15, 15]         848,241
  BatchNorm2d-70          [-1, 307, 15, 15]             614
         SiLU-71          [-1, 307, 15, 15]               0
         Conv-72          [-1, 307, 15, 15]               0
   Bottleneck-73          [-1, 307, 15, 15]               0
       Conv2d-74          [-1, 307, 15, 15]         157,184
  BatchNorm2d-75          [-1, 307, 15, 15]             614
         SiLU-76          [-1, 307, 15, 15]               0
         Conv-77          [-1, 307, 15, 15]               0
       Conv2d-78          [-1, 512, 15, 15]         314,368
  BatchNorm2d-79          [-1, 512, 15, 15]           1,024
         SiLU-80          [-1, 512, 15, 15]               0
         Conv-81          [-1, 512, 15, 15]               0
           C3-82          [-1, 512, 15, 15]               0
       Conv2d-83           [-1, 1024, 8, 8]       4,718,592
  BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
         SiLU-85           [-1, 1024, 8, 8]               0
         Conv-86           [-1, 1024, 8, 8]               0
       Conv2d-87            [-1, 614, 8, 8]         628,736
  BatchNorm2d-88            [-1, 614, 8, 8]           1,228
         SiLU-89            [-1, 614, 8, 8]               0
         Conv-90            [-1, 614, 8, 8]               0
       Conv2d-91            [-1, 614, 8, 8]         376,996
  BatchNorm2d-92            [-1, 614, 8, 8]           1,228
         SiLU-93            [-1, 614, 8, 8]               0
         Conv-94            [-1, 614, 8, 8]               0
       Conv2d-95            [-1, 614, 8, 8]       3,392,964
  BatchNorm2d-96            [-1, 614, 8, 8]           1,228
         SiLU-97            [-1, 614, 8, 8]               0
         Conv-98            [-1, 614, 8, 8]               0
   Bottleneck-99            [-1, 614, 8, 8]               0
      Conv2d-100            [-1, 614, 8, 8]         628,736
 BatchNorm2d-101            [-1, 614, 8, 8]           1,228
        SiLU-102            [-1, 614, 8, 8]               0
        Conv-103            [-1, 614, 8, 8]               0
      Conv2d-104           [-1, 1024, 8, 8]       1,257,472
 BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
        SiLU-106           [-1, 1024, 8, 8]               0
        Conv-107           [-1, 1024, 8, 8]               0
          C3-108           [-1, 1024, 8, 8]               0
      Conv2d-109            [-1, 512, 8, 8]         524,288
 BatchNorm2d-110            [-1, 512, 8, 8]           1,024
        SiLU-111            [-1, 512, 8, 8]               0
        Conv-112            [-1, 512, 8, 8]               0
   MaxPool2d-113            [-1, 512, 8, 8]               0
   MaxPool2d-114            [-1, 512, 8, 8]               0
   MaxPool2d-115            [-1, 512, 8, 8]               0
      Conv2d-116           [-1, 1024, 8, 8]       2,097,152
 BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
        SiLU-118           [-1, 1024, 8, 8]               0
        Conv-119           [-1, 1024, 8, 8]               0
        SPPF-120           [-1, 1024, 8, 8]               0
      Linear-121                  [-1, 100]       6,553,700
        ReLU-122                  [-1, 100]               0
      Linear-123                    [-1, 4]             404

Total params: 23,807,796 Trainable params: 23,807,796 Non-trainable
params: 0
---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 147.71 Params size
(MB): 90.82 Estimated Total Size (MB): 239.10
---------------------------------------------------------------- def train(dataloader, model, loss_fn, optimizer):

三、 训练模型

1. 编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)   

    train_loss, train_acc = 0, 0  
    
    for X, y in dataloader:  
        X, y = X.to(device), y.to(device)
        
        pred = model(X)          
        loss = loss_fn(pred, y)  
        
        optimizer.zero_grad()  
        loss.backward()       
        optimizer.step()       
        
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  
    num_batches = len(dataloader)         
    test_loss, test_acc = 0, 0
    
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.正式训练

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-5)
loss_fn    = nn.CrossEntropyLoss()

epochs     = 20

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0   
for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    

PATH = './best_model.pth' 
torch.save(best_model.state_dict(), PATH)

print('Done')

Epoch: 1, Train_acc:59.6%, Train_loss:0.964, Test_acc:72.0%, Test_loss:0.727, Lr:1.00E-05
Epoch: 2, Train_acc:69.8%, Train_loss:0.745, Test_acc:66.2%, Test_loss:0.611, Lr:1.00E-05
Epoch: 3, Train_acc:72.4%, Train_loss:0.625, Test_acc:78.7%, Test_loss:0.492, Lr:1.00E-05
Epoch: 4, Train_acc:80.6%, Train_loss:0.497, Test_acc:85.3%, Test_loss:0.393, Lr:1.00E-05
Epoch: 5, Train_acc:83.9%, Train_loss:0.412, Test_acc:80.9%, Test_loss:0.360, Lr:1.00E-05
Epoch: 6, Train_acc:86.6%, Train_loss:0.364, Test_acc:86.2%, Test_loss:0.298, Lr:1.00E-05
Epoch: 7, Train_acc:89.2%, Train_loss:0.292, Test_acc:93.3%, Test_loss:0.225, Lr:1.00E-05
Epoch: 8, Train_acc:90.1%, Train_loss:0.250, Test_acc:92.4%, Test_loss:0.197, Lr:1.00E-05
Epoch: 9, Train_acc:91.4%, Train_loss:0.248, Test_acc:94.7%, Test_loss:0.269, Lr:1.00E-05
Epoch:10, Train_acc:92.2%, Train_loss:0.202, Test_acc:92.0%, Test_loss:0.263, Lr:1.00E-05
Epoch:11, Train_acc:94.7%, Train_loss:0.171, Test_acc:86.2%, Test_loss:0.445, Lr:1.00E-05
Epoch:12, Train_acc:94.3%, Train_loss:0.175, Test_acc:90.2%, Test_loss:0.244, Lr:1.00E-05
Epoch:13, Train_acc:94.2%, Train_loss:0.155, Test_acc:92.4%, Test_loss:0.238, Lr:1.00E-05
Epoch:14, Train_acc:96.2%, Train_loss:0.118, Test_acc:90.7%, Test_loss:0.330, Lr:1.00E-05
Epoch:15, Train_acc:95.4%, Train_loss:0.124, Test_acc:93.8%, Test_loss:0.158, Lr:1.00E-05
Epoch:16, Train_acc:97.2%, Train_loss:0.093, Test_acc:91.1%, Test_loss:0.270, Lr:1.00E-05
Epoch:17, Train_acc:96.6%, Train_loss:0.104, Test_acc:92.0%, Test_loss:0.248, Lr:1.00E-05
Epoch:18, Train_acc:98.1%, Train_loss:0.071, Test_acc:94.7%, Test_loss:0.219, Lr:1.00E-05
Epoch:19, Train_acc:97.2%, Train_loss:0.072, Test_acc:92.4%, Test_loss:0.207, Lr:1.00E-05
Epoch:20, Train_acc:97.4%, Train_loss:0.082, Test_acc:94.7%, Test_loss:0.216, Lr:1.00E-05
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2. 模型评估

best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

(0.9466666666666667, 0.19661984669751134)

epoch_test_acc

0.9466666666666667

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值