/** * Introduction to Algorithms, Second Edition * 13 Red-Black Trees * * 红黑树的条件: * 1.每个节点标记为“红”或“黑”。 * 2.根标记为“黑”。 * 3.所有叶节点(nil)标记为“黑”。 * 4.如果一个节点为“红”,则它的两个节点都为“黑”。 * 5.对每个的节点,从该节点至后继叶节点包含相同数量的“黑”节点。 * @author 土豆爸爸 * */ import java.util.ArrayList; import java.util.List; public class RedBlackTree { /** * 数据节点 */ public static class Node { int key; Node parent; //父节点 Node left; //左子节点 Node right; //右子节点 Color color; //节点颜色 public Node(int key) { this.key = key; } public boolean isLeft() { return parent != null && parent.left == this; } public boolean isRight() { return parent != null && parent.right == this; } public String toString() { return String.valueOf(key); } } /** * 颜色 */ private enum Color { RED, BLACK}; Node root; //根节点 Node nil; //空节点 /** * 构造函数 */ public RedBlackTree() { nil = new Node(-1); nil.color = Color.BLACK; root = nil; } /** * 左旋转。 * @param x 支点 */ private void leftRotate(Node x) { Node y = x.right; // y是x的右子节点 x.right = y.left; // y的左子树转换成x的右子树 if (y.left != nil) y.left.parent = x; y.parent = x.parent; // 用y替换x的位置 if (x.parent == nil) { root = y; } else if (x == x.parent.left) { x.parent.left = y; } else { x.parent.right = y; } y.left = x; // 将x设置为y的左子节点 x.parent = y; } /** * 右旋转。 * @param x 支点 */ private void rightRotate(Node y) { Node x = y.left; // x是y的右子节点 y.left = x.right; // x的右子树转换成y的左子树 if (x.right != nil) x.right.parent = y; x.parent = y.parent; // 用x替换y的位置 if (y.parent == nil) { root = x; } else if (y == y.parent.left) { y.parent.left = x; } else { y.parent.right = x; } x.right = y; // 将y设置为x的右子节点 y.parent = x; } /** * 采用递归法查找键值为k的节点。 * @param k 节点的键值 * @return 返回键值为k的节点 */ public Node search(int k) { return search(root, k); } /** * 采用递归法查找键值为k的节点。 * @param x 当前节点 * @param k 节点的键值 * @return 返回键值为k的节点 */ private Node search(Node x, int k) { if(x == nil || k == x.key) { return x; } else if(k < x.key) { return search(x.left, k); } else { return search(x.right, k); } } /** * 采用迭代法查找键值为k的节点。 * @param x 当前节点 * @param k 节点的键值 * @return 返回键值为k的节点 */ public Node iterativeSearch(int k) { return iterativeSearch(root, k); } /** * 采用迭代法查找键值为k的节点。 * @param x 当前节点 * @param k 节点的键值 * @return 返回键值为k的节点 */ private Node iterativeSearch(Node x, int k) { while(x != nil && k != x.key) { if(k < x.key) { x = x.left; } else { x = x.right; } } return x; } /** * 返回树的最小键值的节点。 * @return 最小键值的节点 */ public Node minimum() { return minimum(root); } /** * 返回树的最小键值的节点。 * @param x 当前节点 * @return 最小键值的节点 */ private Node minimum(Node x) { while(x.left != nil) { x = x.left; } return x; } /** * 返回树的最大键值的节点。 * @return 最大键值的节点 */ public Node maximum() { return maximum(root); } /** * 返回树的最大键值的节点。 * @param x 当前节点 * @return 最大键值的节点 */ private Node maximum(Node x) { while(x.right != nil) { x = x.right; } return x; } /** * 返回指定节点x的后继节点。 * @param x 当前节点 * @return x的后继节点;如果x具有最大键值,返回null */ public Node successor(Node x) { if(x.right != nil) { return minimum(x.right); } Node y = x.parent; while(y != nil && x == y.right) { x = y; y = y.parent; } return y; } /** * 返回指定节点x的前驱节点。 * @param x 当前节点 * @return x的前驱节点;如果x具有最小键值,返回null */ public Node predecessor(Node x) { if(x.left != nil) { return maximum(x.left); } Node y = x.parent; while(y != nil && x == y.left) { x = y; y = y.parent; } return y; } /** * 插入节点。 * @param z 待插入节点 */ public void insert(Node z) { Node y = nil; //当前节点的父节点 Node x = root; //当前节点 while(x != nil) { //迭代查寻z应该所在的位置 y = x; if(z.key < x.key) { x = x.left; } else { x = x.right; } } z.parent = y; if(y == nil) { root = z; //如果没有父节点,则插入的节点是根节点。 } else if(z.key < y.key) { y.left = z; } else { y.right = z; } z.left = nil; z.right = nil; z.color = Color.RED; insertFixup(z); } /** * 按红黑树规则进行调整。 * @param z 待插入节点 */ public void insertFixup(Node z) { while(z.parent.color == Color.RED) { //违反条件4,并且保证z有爷爷 if(z.parent == z.parent.parent.left) { //z的父节点是左子节点 Node y = z.parent.parent.right; if(y.color == Color.RED) { //如果z的叔叔是红 z.parent.color = Color.BLACK; //将z的父亲和叔叔设为黑 y.color = Color.BLACK; z.parent.parent.color = Color.RED; //z的爷爷设为红 z = z.parent.parent; //迭代 } else { //如果z的叔叔是黑 if (z == z.parent.right) { //如果z是右子节点,左旋 z = z.parent; leftRotate(z); } z.parent.color = Color.BLACK; //z的父亲为黑(叔叔为黑) z.parent.parent.color = Color.RED; //z的爷爷为红 rightRotate(z.parent.parent); // 右旋 } } else { //z的父节点是右子节点,反向对称 Node y = z.parent.parent.left; if(y.color == Color.RED) { z.parent.color = Color.BLACK; y.color = Color.BLACK; z.parent.parent.color = Color.RED; z = z.parent.parent; } else { if (z == z.parent.left) { z = z.parent; rightRotate(z); } z.parent.color = Color.BLACK; z.parent.parent.color = Color.RED; leftRotate(z.parent.parent); } } } root.color = Color.BLACK; //满足条件2 } /** * 删除节点。 * @param z 待删除节点 */ public Node delete(Node z) { Node y = null; Node x = null; if (z.left == nil || z.right == nil) { y = z; } else { y = successor(z); } if (y.left != nil) { x = y.left; } else { x = y.right; } x.parent = y.parent; if (y.parent == nil) { root = x; } else if (y == y.parent.left) { y.parent.left = x; } else { y.parent.right = x; } if (y != z) { // 如果z包含两个子节点,用y替换z的位置 y.parent = z.parent; if (z.parent != nil) { if (z.isLeft()) { z.parent.left = y; } else { z.parent.right = y; } } else { root = y; } z.left.parent = y; y.left = z.left; z.right.parent = y; y.right = z.right; } if(y.color == Color.BLACK) { deleteFixup(x); } return y; } /** * 按红黑树规则进行调整。 * @param z 待删除节点 */ private void deleteFixup(Node x) { while(x != nil && x != root && x.color == Color.BLACK) { if(x == x.parent.left) { Node w = x.parent.right; if(w==nil) return; if(w.color == Color.RED) { w.color = Color.BLACK; x.parent.color = Color.RED; leftRotate(x.parent); w = x.parent.right; } if(w==nil) return; if(w.left.color == Color.BLACK && w.right.color == Color.BLACK) { w.color = Color.RED; x = x.parent; } else { if(w.right.color == Color.BLACK) { w.left.color = Color.BLACK; w.color = Color.RED; rightRotate(w); w = x.parent.right; } w.color = x.parent.color; x.parent.color = Color.BLACK; w.right.color = Color.BLACK; leftRotate(x.parent); x = root; } } else { Node w = x.parent.left; if(w==nil) return; if(w.color == Color.RED) { w.color = Color.BLACK; x.parent.color = Color.RED; rightRotate(x.parent); w = x.parent.left; } if(w==nil) return; if(w.right.color == Color.BLACK && w.left.color == Color.BLACK) { w.color = Color.RED; x = x.parent; } else { if(w.left.color == Color.BLACK) { w.right.color = Color.BLACK; w.color = Color.RED; leftRotate(w); w = x.parent.left; } w.color = x.parent.color; x.parent.color = Color.BLACK; w.left.color = Color.BLACK; rightRotate(x.parent); x = root; } } } x.color = Color.BLACK; } /** * 中序遍历。即从小到大排序。 * @return 返回已排序的节点列表 */ public List<Node> inorderWalk() { List<Node> list = new ArrayList<Node>(); inorderWalk(root, list); return list; } /** * 中序遍历。 * @param x 当前节点 * @param list 遍历结果存储在list中 */ private void inorderWalk(Node x, List<Node> list) { if(x != nil) { inorderWalk(x.left, list); list.add(x); inorderWalk(x.right, list); } } /** * 前序遍历打印。即从小到大排序。 * @return 返回已排序的节点列表 */ public void preorderWalk() { preorderWalk(root); } /** * 中序遍历打印。 * @param x 当前节点 * @param list 遍历结果存储在list中 */ private void preorderWalk(Node x) { if(x != nil) { System.out.print("("); System.out.print(x); preorderWalk(x.left); preorderWalk(x.right); System.out.print(")"); } else { System.out.print("N"); } } } import java.util.List; import junit.framework.TestCase; public class RedBlackTreeTest extends TestCase { public void testLinkedList() { RedBlackTree tree = new RedBlackTree(); // 插入N个随机节点 int count = 100; for (int i = 0; i < count;) { int key = (int) (Math.random() * 100); if (tree.search(key) == tree.nil) { tree.insert(new RedBlackTree.Node(key)); i++; } } //测试最大值,最小值 List<RedBlackTree.Node> list = tree.inorderWalk(); verifyOrdered(list); assertEquals(count, list.size()); assertEquals(list.get(0), tree.minimum()); assertEquals(list.get(list.size() - 1), tree.maximum()); //测试后继 RedBlackTree.Node min = tree.minimum(), succ = null; while((succ=tree.successor(min)) != tree.nil) { assertTrue(succ.key > min.key); min = succ; } //测试前驱 RedBlackTree.Node max = tree.maximum(), pre = null; while((pre=tree.predecessor(max)) != tree.nil) { assertTrue(succ.key < max.key); max = pre; } //测试删除 int[] keys = new int[list.size()]; for(int i = 0; i < keys.length; i++) { keys[i] = list.get(i).key; } PermuteBySorting.permute(keys); for (int i = 0; i < count; i++) { RedBlackTree.Node node = tree.search(keys[i]); assertNotNull(node); tree.delete(node); assertEquals(tree.nil, tree.search(keys[i])); verifyOrdered(tree.inorderWalk()); } } private boolean verifyOrdered(List<RedBlackTree.Node> list) { for (int i = 1; i < list.size(); i++) { if (list.get(i - 1).key > list.get(i).key) { return false; } } return true; } }
算法导论示例-RedBlackTree
最新推荐文章于 2024-06-24 10:08:14 发布