###### 算法导论示例-Huffman
/**
* Introduction to Algorithms, Second Edition
* 16.3 Huffman codes
*
* @author 土豆爸爸
*
*/
import java.util.List;

public class Huffman {
static class Node implements IPriorityQueueElement<Integer>{
Node left; //左子节点
Node right; //右子节点
Integer f; //频率
char c; //字符

public Node() {}

public Node(char c, Integer f) {
this.c = c;
this.f = f;
}
public Integer getKey() {
return f;
}
}

public static Node encode(List<Node> nodes) {
int n = nodes.size();

//根据频率生成最小优先队列
MinPriorityQueue<Integer, Node> queue = new MinPriorityQueue<Integer, Node>(n);
for(Node node : nodes) {
queue.insert(node);
}

for(int i = 0; i < n - 1; i++) {
Node node = new Node();
Node x = queue.extractMin(); //取出队列的前两个元素
Node y = queue.extractMin();
node.left = x; //将取出两个元素作为新节点的子节点
node.right = y;
node.f = x.f + y.f; //新节点的频率是子节点频率之和
queue.insert(node); //插入到队列中
}

return queue.extractMin();
}
}

/**
* Introduction to Algorithms, Second Edition
* 6.5 min-priority queue
*
* @author 土豆爸爸
*
*/
import java.util.EmptyStackException;

public class MinPriorityQueue<KeyType extends Comparable<KeyType>, T extends IPriorityQueueElement<KeyType>> {
T[] array;

int heapSize;

/**
* 构造函数
* @param size 初始数组大小
*/
@SuppressWarnings("unchecked")
public MinPriorityQueue(int size) {
array = (T[]) new IPriorityQueueElement[size];
}

/**
* 获取当前heap中的最小值
*
* @return 最小值
*/
public T minimum() {
return array[0];
}

/**
* 获取当前heap中的最小值,并从heap中删除最小值
* @return 最小值
*/
public T extractMin() {
if (heapSize < 1) {
throw new EmptyStackException();
}
T min = array[0];
array[0] = array[heapSize - 1];
heapSize--;
minHeapify(0);
return min;
}

/**
* 插入一个元素
* @param e
*/
@SuppressWarnings("unchecked")
public void insert(T e) {
if (heapSize == array.length) {
T[] newArray = (T[]) new IPriorityQueueElement[array.length * 2];
System.arraycopy(array, 0, newArray, 0, array.length);
array = newArray;
}
int i = heapSize++;
array[i] = e;
int p = parent(i); // 父结点索引
while (i > 0 && array[p].getKey().compareTo(array[i].getKey()) > 0) {
T temp = array[i];
array[i] = array[p];
array[p] = temp;
i = p;
p = parent(i);
}
}

/**
* 使数组的第i个元素按max heap规则重排
*
* @param i
*            元素索引
*/
private void minHeapify(int i) {
int l = left(i);
int r = right(i);
int smallest; // 当前结点/左子结点/右子结点中最大值的索引
if (l < heapSize && array[l].getKey().compareTo(array[i].getKey()) < 0) {
smallest = l;
} else {
smallest = i;
}

if (r < heapSize && array[r].getKey().compareTo(array[smallest].getKey()) < 0) {
smallest = r;
}

if (smallest != i) {
// 如果最大值不是当前结点,进行交换
T temp = array[i];
array[i] = array[smallest];
array[smallest] = temp;
// 递归调用,直到当前结点比其子结点大
minHeapify(smallest);
}

}

/**
* 计算结点索引为i的元素的父结点的索引
*
* @param i
*            当前索引
* @return 父结点的索引
*/
private int parent(int i) {
return (i + 1) / 2 - 1;
}

/**
* 计算结点索引为i的元素的左子结点的索引
*
* @param i
*            当前索引
* @return 左子结点的索引
*/
private int left(int i) {
return 2 * i + 1;
}

/**
* 计算结点索引为i的元素的右子结点的索引
*
* @param i
*            当前索引
* @return 右子结点的索引
*/
private int right(int i) {
return 2 * i + 2;
}
}

public interface IPriorityQueueElement<KeyType extends Comparable<KeyType>>{
KeyType getKey();
}

import java.util.ArrayList;
import java.util.List;

import junit.framework.TestCase;

public class HuffmanTest extends TestCase {
public void testEncode() {
List<Huffman.Node> c = new ArrayList<Huffman.Node>();

Huffman.Node root = Huffman.encode(c);
assertEquals(100, root.f.intValue());
assertEquals(45, root.left.f.intValue());
assertEquals('a', root.left.c);
assertEquals(55, root.right.f.intValue());
assertEquals('c', root.right.left.left.c);
assertEquals('b', root.right.left.right.c);
assertEquals('f', root.right.right.left.left.c);
assertEquals('e', root.right.right.left.right.c);
assertEquals('d', root.right.right.right.c);
}
}



#### 算法导论之贪心算法(Huffman编码和拟阵)

2016-07-13 16:19:38

#### 【算法导论】贪心算法之赫夫曼编码

2015-02-01 16:31:02

#### 《算法导论》实验四：哈夫曼（Huffman）编码问题（C++实现）

2015-12-14 22:52:10

#### 贪心算法之证明要点----算法导论16.2---5

2013-11-22 22:41:57

#### 哈夫曼编码(Huffman)Java实现代码

2016-07-14 17:00:50

#### CLRS 16.3赫夫曼编码

2016-12-12 12:10:30

#### huffman编码解码

2009年06月12日 8KB 下载

#### 贪心算法——Huffman编码（哈夫曼编码）

2009-08-19 22:53:00

#### 算法导论之--------------Huffman编码

2014-12-21 22:25:12

#### 数据结构和算法——Huffman树和Huffman编码

2017-02-04 15:43:54