【力扣】跳跃游戏II-动态规划(C++)

本文介绍了一种使用动态规划解决给定整数数组中从0开始跳跃到达最后一个元素的最小跳跃次数问题的方法,通过添加元素与其索引之和并遍历查找相对终点实现,但时间复杂度为O(n^2)。

【题目】给定一个长度为 n 的 0 索引整数数组 nums。每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i+j] 处:

  • 0 <= j <= nums[i] 
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是2。从下标为 0 跳到下标为 1 的位置,跳1步,然后跳3步到达数组的最后一个位置。

【思路】由于题中说明最后一个下标的元素必定可以到达,所以我们可以通过动态规划来查找。首先,数组所有元素统统将对应的值+对应的下标,即nums[i]+i。

for (int i = 0; i <nums.size(); i++) {
            nums[i] = i + nums[i];
        }

然后通过两层循环,内层循环从下标最小往最大方向,查找能到达相对终点的最小下标元素,然后将其当做新的相对终点,继续寻找到这个点的最小下标元素。

while (1) {
                if (nums[j] >= max_dist ) {
                    break ;
                    
                } else {
                    j++;
                }
            }

外层循环作用为更新相对终点,以及判定是否为从下标0开始,如果是,则退出循环,计算结束。

while (1) {
            int j = 0;
            while (1) {
                if (nums[j] >= max_dist ) {
                    break ;
                    
                } else {
                    j++;
                }
            }
            step++;
            max_dist = j;
            if(j == 0){
                break;
            }
        }

在编写代码过程中遇到,初始数组为【0】的情况,此时步数应该为0,但是根据以上算法,步数为1。因此,在最开始,我便加上了数组长度的一个判定。

if(nums.size()==1){
            return 0;
        }else{

完整代码如下:

class Solution {
public:
    int jump(vector<int>& nums) {
        int max_dist = nums.size() - 1;    //初始化相对终点,为数组最后一个元素
        int step = 0;    //步数为0
        
        //判断数组长度   
        if(nums.size()==1){
            return 0;
        }else{
            
            //数组每个元素nums[i]+i
            for (int i = 0; i <nums.size(); i++) {
            nums[i] = i + nums[i];
        }

        //循环查找相对终点
        while (1) {
            int j = 0;
            while (1) {
                if (nums[j] >= max_dist ) {
                    break ;
                    
                } else {
                    j++;
                }
            }
            step++;
            max_dist = j;
            if(j == 0){
                break;
            }
        }
        return step;
        }
        
    }
};

【分析】由于本题解法类似于动态规划,通过循环寻找相对终点来求解,但是总体思路偏暴力解法,时间复杂度为O(n^2),空间复杂度为O(1)。如果n过大,则求解时间会过长。

如果有更好的解题思路,或者发现此方法可以改进的地方,可以在评论区发表见解。 

<think>好的,用户需要查找LeetCode跳跃问题的C++解决方案。首先,我得明确用户具体指的是哪一个跳跃问题。因为LeetCode上有几个类似的题目,比如“跳跃游戏”(Jump Game)和“跳跃游戏II”(Jump Game II)。根据用户提到的动态规划问题,以及引用[1]中的描述,应该是“跳跃游戏”,也就是判断能否到达最后一个位置的问题。 接下来,我需要回顾这个问题的解决方法。根据常见的解法,通常有贪心算法和动态规划两种方法。动态规划可能会比较直观,但时间复杂度较高;而贪心算法更高效,可以在O(n)时间内解决问题。用户可能更希望看到最优的解法,所以优先考虑贪心算法。 然后,我需要确认用户需要的是C++的实现。引用[2]中提供了一个C++的数组旋转例子,这可以作为代码风格的参考。因此,在编写代码时,应保持类似的风格,使用vector,包含必要的头文件,并给出一个类或者函数的实现。 现在,需要构建解决方案的步骤。对于跳跃游戏问题,贪心算法的核心是维护一个最远可达的位置,遍历数组时更新这个值。如果当前位置超过了最远可达位置,说明无法到达终点。否则,在遍历结束后判断最远可达位置是否大于等于终点索引。 接下来,需要将这一思路转化为C++代码。确保代码结构清晰,注释到位,便于用户理解。同时,按照引用[2]中的示例,可能使用类Solution,并在其中定义成员函数canJump。测试用例部分也需要简单展示如何使用这个函数。 另外,用户可能对算法的时间复杂度和空间复杂度感兴趣,所以需要补充这部分的分析。贪心算法的时间复杂度是O(n),空间复杂度是O(1),这是最优的解决方案。 最后,生成相关问题,帮助用户进一步学习。可能需要包括动态规划与贪心的对比、跳跃游戏II的解法、优化方法等。确保问题相关且有引导性,促进用户深入探索。 检查LaTeX格式是否符合要求,数学表达式是否正确使用$...$。例如,数组索引i,最远位置max_reach等不需要数学格式,但如果有方程或复杂表达式则需处理。当前问题中可能不需要太多数学公式,但如果有的话,如max_reach的更新规则,可以用$max\_reach = \max(max\_reach, i + nums[i])$。 总结整个思考过程,确保回答结构清晰,代码正确,引用正确添加,并生成相关问题。</think>关于LeetCode跳跃游戏问题的C++解决方案,以下是详细实现与分析: ### 问题描述 给定非负整数数组$nums$,每个元素表示在当前位置能跳跃的最大长度。判断从第一个位置出发,能否到达最后一个位置(索引$n-1$)。 ### 贪心算法实现(最优解) 这是时间复杂度$O(n)$、空间复杂度$O(1)$的高效解法: ```cpp #include <vector> using namespace std; class Solution { public: bool canJump(vector<int>& nums) { int max_reach = 0; // 当前能到达的最远位置 for (int i = 0; i < nums.size(); ++i) { if (i > max_reach) return false; // 当前位置不可达 max_reach = max(max_reach, i + nums[i]); if (max_reach >= nums.size() - 1) return true; // 提前终止条件 } return true; } }; ``` ### 算法解析 1. **核心思想**:维护当前能到达的最远位置$max\_reach$ 2. **终止条件**: - 当遍历到$i > max\_reach$时说明存在无法跨越的缺口 - 当$max\_reach \geq n-1$时提前返回成功 3. **正确性证明**:通过不断扩展可达范围,最终覆盖终点即成功[^1] ### 动态规划解法对比 虽然贪心算法更优,但动态规划解法有助于理解问题本质: ```cpp bool canJump_DP(vector<int>& nums) { vector<bool> dp(nums.size(), false); dp[0] = true; for (int i = 0; i < nums.size(); ++i) { if (!dp[i]) continue; for (int j = 1; j <= nums[i] && i+j < nums.size(); ++j) dp[i+j] = true; } return dp.back(); } ``` 时间复杂度$O(n^2)$,空间复杂度$O(n)$,适用于教学演示但实际效率较低[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值