class MaxQueue {
public:
MaxQueue() {
}
int max_value() {
return d.empty() ? -1:d.front();
}
void push_back(int value) {
q.push(value);
while(!d.empty() && d.back() < value)
{
d.pop_back();
}
d.push_back(value);
}
int pop_front() {
if(q.empty())
{
return -1;
}
int val = q.front();
if(q.front() == d.front())
{
d.pop_front();
}
q.pop();
return val;
}
queue<int> q;
deque<int> d;
};
/**
* Your MaxQueue object will be instantiated and called as such:
* MaxQueue* obj = new MaxQueue();
* int param_1 = obj->max_value();
* obj->push_back(value);
* int param_3 = obj->pop_front();
*/
有点类似于之前写的包含min函数的栈,但最开始思路是一个队列,一个栈,发现存在逻辑错误。解析中提到,使用一个队列和一个双端队列。双端队列用来记录最大值,确保其存储的数据是非递减的,即可实现该题队列的最大值。
双端队列可以前删后删,前插后插,相较起来比较灵活。
while(!d.empty() && d.back() < value)确保双端队列里是非递减的,值得注意的是,不能写成d.back()<=value。不然双端队列中会缺少元素。
class Solution {
public:
int crackNumber(int ciphertext) {
string s = to_string(ciphertext);
int a = 1, b = 1;
for(int i = 2; i <= s.size(); i++)
{
string temp = s.substr(i-2,2);//从索引i-2到i之前,不包括i,第二个参数表示长度为2
int c = temp.compare("10") >= 0 && temp.compare("25") <= 0 ? a+b : a;
b = a;
a = c;
}
return a;
}
};
最开始的思路在将整数转化为字符串,但在判断条件下卡住了。这里的解决办法是用到了字符串的
compare方法
,比括号内的大就大于0,反之亦然。除此之外,to_string函数
也是第一次用到,可以快速将整形数据转化为字符串,而减少了for循环遍历的麻烦;substr()函数
表示用来截取字符串,第一个参数为索引起始索引,第二个参数为长度。
该题为动态规划类型的题目,解决动态规划的题目首要目标是能写出其
递推公式,即转移方程
.
class Solution {
public:
int jewelleryValue(vector<vector<int>>& frame) {
int i, j;
for(i = 0; i < frame.size(); i++)
{
for(j = 0; j < frame[i].size(); j++)
{
// if(i == 0 && j == 0)
// {
// continue;
// }
if(i == 0 && j != 0)
{
frame[i][j] += frame[i][j-1];
}
else if(i != 0 && j == 0)
{
frame[i][j] += frame[i-1][j];
}
else if(i != 0 && j != 0)
{
frame[i][j] += max(frame[i-1][j], frame[i][j-1]);
}
}
}
return frame[i-1][j-1];
}
};
最开始的思路是想到之前写过的迷宫问题,通过定义上下左右的数据结构进行广度优先搜索,最后未果。
这里需要注意的是数组越界的问题,不能超过了二维数组的上下左右边界,根据状态转移方程还是很轻松写出代码的。
动态规划+哈希表
class Solution {
public:
int dismantlingAction(string arr) {
unordered_map<char, int> m;
int res = 0, temp = 0, i;
for(int j = 0; j < arr.size(); j++)
{
if(m.find(arr[j]) == m.end())
{
i = -1;//没找到
}
else
{
i = m.find(arr[j])->second;//找到了就更新i值
}
m[arr[j]] = j;
temp = temp < j-i ? temp+1 : j-i;
res = max(res, temp);
}
return res;
}
};
最开始的思路是用两层for循环,利用双指针去遍历数组,可是在写的过程中发现无法找到与当前下标左边相同的字符。而题解就是用的unordred_map哈希表解决这个问题的。回顾下哈希表的知识,unordered_map与map不同,前者是无序后者是有序,哈希表有两个值,分别是key值和value值。题中的key值为char,value值为int。这里使用的find函数是c++中STL内置算法,其返回值是迭代器,找到了就返回该位置的迭代器,没找到就返回末尾迭代器。所以在更新i值时是用m.find(arr[j])->second
动态规划+线性查找
class Solution {
public:
int dismantlingAction(string arr) {
int res = 0, temp = 0;
for(int j = 0; j < arr.size(); j++)
{
int i = j-1;
while(i >= 0 && arr[i] != arr[j]) i--;//线性查找i
temp = temp < j-i ? temp+1 : j-i;
res = max(res, temp);
}
return res;
}
};
总结:该方法解决了我最初想法卡壳的地方,就是寻找其左边相同字符的下标,应当从j-1的位置向左边遍历,所以告诉我们做题不能一贯性思维。写习惯了从左往右的遍历,但是发现从右往左遍历问题就能迎刃而解。
class Solution {
public:
int nthUglyNumber(int n) {
int a = 0, b = 0, c = 0, n1, n2, n3;
int dp[n];
dp[0] = 1;
for(int i = 1; i < n; i++)
{
n1 = 2*dp[a];
n2 = 3*dp[b];
n3 = 5*dp[c];
dp[i] = min(min(n1, n2), n3);
if(dp[i] == n1) a++;
if(dp[i] == n2) b++;
if(dp[i] == n3) c++;
}
return dp[n-1];
}
};
初看以为能做,在思考过程中还是会卡壳。卡壳点就在下标的关系是模糊的,需要自己设定,而并不是一定与前一个数据有倍数上的关系,而是与前面中的某个数有关系。关键是在最小值函数的使用上。这里我不太会组织语言,还是照搬解析的好。