用Python学《微积分B》(多元函数的微分)

本文深入探讨了多元函数的微分,包括偏导数和全微分的概念。偏导数将多元问题转化为一元问题,全微分则通过偏导数的叠加来表示。文章通过实例介绍了如何使用Python的Sympy库求解偏导数,并解释了全微分的几何意义及其在近似计算中的应用。
摘要由CSDN通过智能技术生成


  多元函数的微分包括“偏导数”和“全微分”,而“全微分”在满足一定条件时,通过“偏导数”的叠加来表示。这种叠加可以让人联想到“空间向量”与“直角坐标系”的各个分量之间的叠加。
  偏导数(Partial Derivative)内容相对简单,主要包括:偏导数与全微分(全导数-total derivative)的关系、多元函数偏导数与一元函数的导数的关系、偏导数的标记法、偏导数的几何意义、高阶偏导数、混合偏导数。此外,math is fun也对“Partial Derivatives”有形象的介绍。
  全微分(Total Derivative)部分主要关注全微分与偏导数的关系。整个多元函数的微分是循着以下思路展开的:
  一元函数导数 切片 多元函数偏导数 叠加 多元函数全微分。
  很明显,它应用了两种方法:切片(降维)和叠加(分解)。


一、偏导数


1,多元函数的偏导数与一元函数导数
  回顾一下一元函数导数的定义

f(x0)=limxx0f(x)f(x0)xx0

  它是用“极限”来表示的,描述函数 f(x) 在 x0 点附近(邻域)函数的变化量与自变量的变化量的关系,因此也记作 df(x)dx 。比如圆的面积与半径的变化关系可以表示为:
dSC(r)dr=d[πr2]dr

  类似地,多元函数的导数也是描述 在某点附近( P0 的邻域)函数的变化量与自变量的变化量的关系。同样地,它也需要用“极限”来表示,但是,我们在上一节学到,多元函数在某点的极限有不同的逼近路径,且沿不同的逼近路径求得的极限值是有可能不同的。因此,多元函数的导数(全导数-total derivative)是比较复杂的。那么,我们考虑其中一种简单的情况,我们只考虑多元函数的函数值与其中一个变量的变化情况,而保持其他变量恒定,将多元问题转化为一元问题。比如:长方形的面积 S=lengthwidth ,这个面积随两个变量变化。如果我们将其中一个变量固定,比如固定宽度,那么,这个长方形的面积 S=W0x ,即这个面积与长度呈线性增长关系。
SR(l,w0)l=[w0l]l=w0

  这就是“多元函数的偏导数”,很明显,它将“多元函数问题”转化为了“一元函数问题”。用极限可以表示为:
fx(x0,y0)=limΔx0f(x0+Δx,y0)f(x0,y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值