多元函数的微分包括“偏导数”和“全微分”,而“全微分”在满足一定条件时,通过“偏导数”的叠加来表示。这种叠加可以让人联想到“空间向量”与“直角坐标系”的各个分量之间的叠加。
偏导数(Partial Derivative)内容相对简单,主要包括:偏导数与全微分(全导数-total derivative)的关系、多元函数偏导数与一元函数的导数的关系、偏导数的标记法、偏导数的几何意义、高阶偏导数、混合偏导数。此外,math is fun也对“Partial Derivatives”有形象的介绍。
全微分(Total Derivative)部分主要关注全微分与偏导数的关系。整个多元函数的微分是循着以下思路展开的:
一元函数导数 ← 切片 ← 多元函数偏导数 → 叠加 → 多元函数全微分。
很明显,它应用了两种方法:切片(降维)和叠加(分解)。
一、偏导数
1,多元函数的偏导数与一元函数导数
回顾一下一元函数导数的定义
f′(x0)=limx→x0f(x)−f(x0)x−x0
它是用“极限”来表示的,描述函数 f(x) 在 x0 点附近(邻域)函数的变化量与自变量的变化量的关系,因此也记作 df(x)dx 。比如圆的面积与半径的变化关系可以表示为:
dSC(r)dr=d[πr2]dr
类似地,多元函数的导数也是描述 在某点附近( P0 的邻域)函数的变化量与自变量的变化量的关系。同样地,它也需要用“极限”来表示,但是,我们在上一节学到,多元函数在某点的极限有不同的逼近路径,且沿不同的逼近路径求得的极限值是有可能不同的。因此,多元函数的导数(全导数-total derivative)是比较复杂的。那么,我们考虑其中一种简单的情况,我们只考虑多元函数的函数值与其中一个变量的变化情况,而保持其他变量恒定,将多元问题转化为一元问题。比如:长方形的面积 S=length∗width ,这个面积随两个变量变化。如果我们将其中一个变量固定,比如固定宽度,那么,这个长方形的面积 S=W0∗x ,即这个面积与长度呈线性增长关系。
∂SR(l,w0)∂l=∂[w0∗l]∂l=w0
这就是“多元函数的偏导数”,很明显,它将“多元函数问题”转化为了“一元函数问题”。用极限可以表示为:
fx(x0,y0)=limΔx→0f(x0+Δx,y0)−f(x0,y