用Python实现最速下降法求极值

本文介绍了如何使用Python实现最速下降法(梯度下降法)寻找多元函数的极小值。通过Goldstein线性搜索确定最优步长,并以Rosenbrock函数为例进行演示。代码实现包括一个独立的linesearch.py文件,包含Goldstein搜索函数,以及调用该函数的主程序。由于线性搜索中涉及随机函数,每次运行结果可能会有所不同。
摘要由CSDN通过智能技术生成

对于一个多元函数 f(x)=f(x1,x2,,xn) ,用最速下降法(又称梯度下降法)求其极小值的迭代格式为

xk+1=xk+αkd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值