概率论原理精解【6】

测度论

基础

  • ( X 1 , ρ 1 ) , ( X 2 , ρ 2 ) , . . . . . , ( X d , ρ d ) 都是测度空间。 设 X = × i = 1 d X i , 定义 ρ ( x , y ) = Σ i = 1 d ρ i 2 ( x i , y i ) 其中, x = ( x 1 , x 2 , . . . , x d ) , y = ( y 1 , y 2 , . . . , y d ) ∈ X ,则 ρ 是 X 上的度量 ( X , ρ ) 为( X 1 , ρ 1 ) , ( X 2 , ρ 2 ) , . . . . . , ( X d , ρ d ) 的乘积度量空间 (X_1,\rho_1),(X_2,\rho_2),.....,(X_d,\rho_d)都是测度空间。 \\设X=\times_{i=1}^dX_i,定义\rho(x,y)=\sqrt {\Sigma_{i=1}^d\rho_i^2(x_i,y_i)} \\其中,x=(x_1,x_2,...,x_d),y=(y_1,y_2,...,y_d) \in X,则\rho是X上的度量 \\(X,\rho)为(X_1,\rho_1),(X_2,\rho_2),.....,(X_d,\rho_d)的乘积度量空间 X1,ρ1),(X2,ρ2),.....,(Xd,ρd)都是测度空间。X×i=1dXi,定义ρ(x,y)=Σi=1dρi2(xi,yi) 其中,x=(x1,x2,...,xd),y=(y1,y2,...,yd)X,则ρX上的度量(X,ρ)为(X1,ρ1),(X2,ρ2),.....,(Xd,ρd)的乘积度量空间
  • { x ( m ) = ( x 1 ( m ) , x 2 ( m ) , . . . , x d ( m ) ) , m ≥ 1 } 是 × i = 1 d X i 的基本列 < = > 对于每个 i = 1 , 2 , . . , d , { x i m , m ≥ 1 } 是 X i 中的基本列。 \{x^{(m)}=(x_1^{(m)},x_2^{(m)},...,x_d^{(m)}),m \ge 1\}是\times_{i=1}^dX_i的基本列<=> \\对于每个i=1,2,..,d,\{x_i^{m},m \ge 1\}是X_i中的基本列。 \\ {x(m)=(x1(m),x2(m),...,xd(m)),m1}×i=1dXi的基本列<=>对于每个i=1,2,..,d,{xim,m1}Xi中的基本列。
  • 有限维欧氏空间 R d 的完备性 有限维欧氏空间R^d的完备性 有限维欧氏空间Rd的完备性
    对 R d 中任意两点 x = ( x 1 , x 2 , . . . , x d ) , y = ( y 1 , y 2 , . . . y d ),定义度量 ∣ ∣ x − y ∣ ∣ = Σ i = 1 d ( x i − y i ) 2 它默认为 R d 中的度量,按这个度量,将 R d 视为完备度量空间。 对R^d中任意两点x=(x_1,x_2,...,x_d),y=(y_1,y_2,...y_d),定义度量 \\||x-y||=\sqrt {\Sigma_{i=1}^d(x_i-y_i)^2} \\它默认为R^d中的度量,按这个度量,将R^d视为完备度量空间。 Rd中任意两点x=(x1,x2,...,xd),y=(y1,y2,...yd),定义度量∣∣xy∣∣=Σi=1d(xiyi)2 它默认为Rd中的度量,按这个度量,将Rd视为完备度量空间。

理论

下面内容由文心一言自动生成。
完备度量空间(也称为完备空间)是数学中的一个重要概念,它指的是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。以下是对完备度量空间的详细解释:

定义与性质
  • 定义:完备度量空间是一个度量空间,其中的任何柯西序列都收敛在该空间内。柯西序列是指一个序列,其中任意两项之间的距离随着项数的增加而趋于零。
  • 性质:直观上讲,一个空间完备就是指“没有孔”且“不缺皮”,即内部和边界上都不缺点。这类似于一个集合的闭包,但完备性是空间或集合的性质,而闭是子集的性质。
例子
  • 有理数空间:不是完备的,因为存在柯西序列(如有限位小数表示的序列)其极限不在有理数空间内。
  • 实数空间:是完备的,因为实数空间包含了有理数空间的所有柯西序列的极限。
  • 开区间(0,1):不是完备的,因为存在柯西序列(如(1/2, 1/3, 1/4, …))其不收敛于开区间内的任何点。
完备化

对于任一度量空间M,我们可以构造相应的完备度量空间M’(或表示为),使得原度量空间成为新的完备度量空间的稠密子空间。M’具备以下普适性质:若N为任一完备度量空间,f为任一从M到N的一致连续函数,则存在唯一的从M’到N的一致连续函数f’使得该函数为f的扩展。新构造的完备度量空间M’在等距同构意义下由该性质所唯一决定,称为M的完备化空间。

相关定理
  • 任一紧致度量空间都是完备的。实际上,一个度量空间是紧致的当且仅当该空间是完备且完全有界的。
  • 完备空间的任一子空间是完备的当且仅当它是一个闭子集
直观理解

在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素。这个概念在多个不同的数学领域中有广泛的应用,如代数闭域、紧化(compactification)或哥德尔不完备定理等。在不同的领域中,“完备”也有不同的含义,但基本思想是一致的,即一个对象或空间在其内部是“完整”的,没有缺失任何必要的元素或性质。

结论

完备度量空间是数学中的一个基本概念,它对于理解度量空间的性质、结构以及与其他数学领域的联系具有重要意义。通过完备化过程,我们可以将不完备的空间扩展为完备的空间,从而更方便地进行数学分析和研究。

基本列与柯西数列的区别

基本列与柯西数列在本质上是相同的,它们之间没有区别。基本列,也被称为柯西列或Cauchy列,是极限存在的数列,即满足柯西条件的数列。

基本概念
  • 基本列(柯西列):在数学中,一个数列如果满足以下条件,则被称为基本列或柯西列:对任意给定的正实数ε,存在正整数N,使得当n, m > N时,有|xn - xm| < ε。这个定义表明,当数列的项数足够大时,数列中任意两项之间的差的绝对值可以小于任意给定的正数ε。
性质与特点
  • 收敛性:一个数列是收敛的,当且仅当它是基本列(柯西列)。这是由柯西收敛定理(也称为柯西准则)所给出的。
  • 有界性:任何基本列(柯西列)都是有界的。这是因为对于ε = 1(或任何正数),我们可以找到一个N,使得当n > N时,数列中的项都在某个有限范围内。
  • 完备性:在完备空间(如实数空间)中,所有的基本列(柯西列)都有极限。这意味着,如果我们知道一个数列是基本列,那么我们就可以确信这个数列在实数空间中有一个极限,而不需要实际求出这个极限。
实际应用
  • 实数构造:柯西列在构造实数的过程中有重要价值。例如,康托尔(Cantor)的实数定义就是基于基本有理数列的极限来定义的。
  • 数学分析:在数学分析中,柯西列是一个非常重要的概念,它经常用于证明数列的收敛性、函数的连续性等。

综上所述,基本列与柯西数列是同一个概念的不同称呼,它们在数学中扮演着重要的角色,特别是在极限理论和实数构造方面。

参考文献

1.测度论基础与高等概率论
2.文心一言

  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值