实变函数精解【11】

点集

基础

  • 设 f : R n → R n ,且满足 设f:R^n\rightarrow R^n,且满足 f:RnRn,且满足
    1. 若 K ⊂ R n 是紧集,则 f ( K ) 是紧集。 1.若K \subset R^n是紧集,则f(K)是紧集。 1.KRn是紧集,则f(K)是紧集。
    2. 若 { K i } 是 R n 中递减紧集列,则 f ( ∩ i = 1 ∞ K i ) = ∩ i = 1 ∞ f ( K i ) 2.若\{K_i\}是R^n中递减紧集列,则f(\cap_{i=1}^\infty K_i)=\cap_{i=1}^\infty f( K_i) 2.{Ki}Rn中递减紧集列,则f(i=1Ki)=i=1f(Ki)
    那么 f ∈ C ( R n ) 那么f \in C(R^n) 那么fC(Rn
    证: 1. K 和 f ( K ) 任何开覆盖都包含有限子覆盖 2. f ( ∩ i = 1 ∞ K i ) = ∩ i = 1 ∞ f ( K i ) 3. E = ∩ i = 1 ∞ K i ⊂ R n x 0 ∈ ∩ i = j ∞ K i ∈ E , f ( x 0 ) = f ( ∩ i = j ∞ K i ) , 1 ≤ j < ∞ 4. ∀ ϵ > 0 , ∃ δ > 0 , { K i } 是 R n 中递减紧集列 x ∈ E ∩ B ( x 0 , δ ) = ( ∩ i = 1 ∞ K j ) ∩ B ( ∩ i = j ∞ K i , δ ) 5. f ( ( ∩ i = 1 ∞ K i ) ∩ B ( ∩ i = j ∞ K i , δ ) ) 是紧集 f ( ( ∩ i = 1 ∞ K i ) ∩ B ( ∩ i = j ∞ K i , δ ) ) 任何开覆盖都包含有限子覆盖 , 属于递减紧集列 而实际 ( ∩ i = 1 ∞ K i ) ∩ B ( ∩ i = j ∞ K i , δ ) 本身就是递减紧集列。 因为 ϵ 可任意减少 所以, ∣ f ( x ) − f ( x 0 ) ∣ ≤ ϵ 所以, f 在 x = x 0 处连续,且在 x = ∩ i = 1 ∞ K i 内任意一点都连续。 证:1.K和f(K)任何开覆盖都包含有限子覆盖 \\2.f(\cap_{i=1}^\infty K_i)=\cap_{i=1}^\infty f( K_i) \\ \\3.E =\cap_{i=1}^\infty K_i\subset R^n \\x_0 \in \cap_{i=j}^\infty K_i \in E,f(x_0)=f(\cap_{i=j}^\infty K_i ),1 \le j \lt \infty \\4.\forall \epsilon \gt 0,\exist \delta \gt 0,\{K_i\}是R^n中递减紧集列 \\x \in E\cap B(x_0,\delta)=(\cap_{i=1}^\infty K_j ) \cap B(\cap_{i=j}^\infty K_i,\delta) \\5.f((\cap_{i=1}^\infty K_i ) \cap B(\cap_{i=j}^\infty K_i,\delta))是紧集 \\f((\cap_{i=1}^\infty K_i ) \cap B(\cap_{i=j}^\infty K_i,\delta))任何开覆盖都包含有限子覆盖,属于递减紧集列 \\而实际(\cap_{i=1}^\infty K_i ) \cap B(\cap_{i=j}^\infty K_i,\delta)本身就是递减紧集列。 \\因为\epsilon可任意减少 \\所以,|f(x)-f(x_0)| \le \epsilon \\所以,f在x=x_0处连续,且在x=\cap_{i=1}^\infty K_i内任意一点都连续。 证:1.Kf(K)任何开覆盖都包含有限子覆盖2.f(i=1Ki)=i=1f(Ki)3.E=i=1KiRnx0i=jKiE,f(x0)=f(i=jKi),1j<4.∀ϵ>0,δ>0,{Ki}Rn中递减紧集列xEB(x0,δ)=(i=1Kj)B(i=jKi,δ)5.f((i=1Ki)B(i=jKi,δ))是紧集f((i=1Ki)B(i=jKi,δ))任何开覆盖都包含有限子覆盖,属于递减紧集列而实际(i=1Ki)B(i=jKi,δ)本身就是递减紧集列。因为ϵ可任意减少所以,f(x)f(x0)ϵ所以,fx=x0处连续,且在x=i=1Ki内任意一点都连续。
  • 设 A = [ − 1 , 0 ) ∪ { 1 / n : n ∈ N } ⊂ R , 求 A ∘ , A ′ , A ˉ , ∂ A 1. ( − 1 , 0 ) ⊂ A ∘ , ( − 1 , 0 ) = A ∘ , { 1 / n : n ∈ N } 不是内点, 因为找不到 r ,使得 B r ( x ) ⊂ A 。 2. x ∈ { 1 / n : n ∈ N } 属于孤立点,不属于 A ′ , ∀ r > 0 , B r ( x ) \ { x } ∩ A = ∅ ,为孤立点 x = 0 时, ∀ r > 0 , B r ( 0 ) \ { 0 } ∩ A ≠ ∅ A ′ = [ − 1 , 0 ] 3. A ˉ = A ∪ A ′ = [ − 1 , 0 ] ∪ { 1 / n : n ∈ N } 4. ∂ A = A ˉ \ A ∘ = { − 1 , 0 } ∪ { 1 / n : n ∈ N } 设A=[-1,0)\cup\{1/n:n \in N\}\subset R, \\求A^\circ,A',\bar A,\partial A \\1.(-1,0) \subset A^\circ,(-1,0)=A^\circ,\{1/n:n \in N\}不是内点, \\因为找不到r,使得B_r(x)\subset A。 \\2.x\in \{1/n:n \in N\}属于孤立点,不属于A', \\\forall r>0,B_r(x)\backslash\{x\}\cap A = \emptyset,为孤立点 \\x=0时,\forall r>0,B_r(0)\backslash\{0\}\cap A \ne \emptyset \\A'=[-1,0] \\3.\bar A=A\cup A'=[-1,0]\cup\{1/n:n \in N\} \\4.\partial A=\bar A\backslash A^\circ=\{-1,0\}\cup \{1/n:n \in N\} A=[1,0){1/n:nN}RA,A,Aˉ,A1.(1,0)A,(1,0)=A,{1/n:nN}不是内点,因为找不到r,使得Br(x)A2.x{1/n:nN}属于孤立点,不属于A,r>0,Br(x)\{x}A=,为孤立点x=0时,r>0,Br(0)\{0}A=A=[1,0]3.Aˉ=AA=[1,0]{1/n:nN}4.A=Aˉ\A={1,0}{1/n:nN}

理论

以下内容来自文心一言自动生成

紧集

紧集是数学中,特别是在拓扑学和度量空间理论中的一个核心概念。以下是对紧集的详细说明,包括定义、原理、计算(主要通过性质体现)、例子以及例题。

一、紧集的定义

紧集是指拓扑空间内的一类特殊点集,它们的任何开覆盖都有有限子覆盖。具体来说,设X为拓扑空间,K⊂X,若K的每个开覆盖均有有限子覆盖,则称K为紧集。在度量空间中,紧集还可以定义为满足以下任一条件的集合:

  • 任意列有收敛子列且该子列的极限点属于该集合(自列紧集)。
  • 完备且完全有界。
二、紧集的原理

紧集的概念源于对集合“紧凑性”的直观理解,即集合中的点不会“过于分散”,以至于无法用有限个开集来覆盖。紧集的性质在很大程度上反映了集合的“内聚性”和“完整性”。具体来说,紧集具有以下原理:

  • 闭集和有界性:在度量空间中,紧集通常是有界的闭集,但反之不一定成立。紧集的闭集性质保证了集合中的点序列在适当条件下会收敛到集合中的点,而有界性则限制了集合在空间中的扩展范围。
  • 连续映射的保紧性:如果有一个从紧集到另一拓扑空间的连续映射,那么该映射的像集也是紧集。这一性质在函数分析和拓扑学中有着广泛的应用。
  • 有限交性质:在度量空间中,紧集还具有有限交性质,即任意有限个紧集的交集仍然是紧集。这一性质反映了紧集在交运算下的稳定性。
三、紧集的计算(主要通过性质体现)

紧集的计算通常不是通过直接的数值计算来完成的,而是通过利用紧集的性质来推断或证明某个集合是否为紧集。例如,在度量空间中,我们可以利用集合的有界性和闭集性质来判断其是否为紧集。此外,对于某些特殊的度量空间(如实数空间或欧几里得空间),我们还可以利用更具体的性质(如Heine-Borel定理)来判断集合的紧性。

四、紧集的例子
  • 有限区间 在实数直线上,闭区间 [ a , b ] 是一个紧集。无论我们如何选取这个区间的开覆盖(如一系列开区间 ( a − ε , b + ε ) ),我们总可以从中找到有限个开区间来覆盖整个闭区间 在实数直线上,闭区间[a, b]是一个紧集。无论我们如何选取这个区间的开覆盖(如一系列开区间(a-ε, b+ε)),我们总可以从中找到有限个开区间来覆盖整个闭区间 在实数直线上,闭区间[a,b]是一个紧集。无论我们如何选取这个区间的开覆盖(如一系列开区间(aε,b+ε)),我们总可以从中找到有限个开区间来覆盖整个闭区间
  • 有限曲线:在二维欧几里得空间中,一条有限长度的曲线(如圆的一段弧)也是一个紧集。这是因为曲线可以被有限个开圆盘所覆盖,而这些开圆盘的并集就是曲线的一个开覆盖。
  • 闭球 在 n 维欧几里得空间中,以原点为中心、 r 为半径的闭球 B ( 0 , r ) 也是一个紧集。 这是因为闭球可以被有限个以原点为中心、半径略大于 r 的开球所覆盖 在n维欧几里得空间中,以原点为中心、r为半径的闭球B(0, r)也是一个紧集。\\这是因为闭球可以被有限个以原点为中心、半径略大于r的开球所覆盖 n维欧几里得空间中,以原点为中心、r为半径的闭球B(0,r)也是一个紧集。这是因为闭球可以被有限个以原点为中心、半径略大于r的开球所覆盖
五、例题

例题:证明在实数空间R中,闭区间[0, 1]是紧集。

证明

  1. 闭集性质 首先证明 [ 0 , 1 ] 是闭集。设 x 是 [ 0 , 1 ] 的极限点,即存在 [ 0 , 1 ] 中的点列 x n 使得 l i m x n = x 。 由于 x n 中的每个元素都属于 [ 0 , 1 ] ,因此 x 的取值范围也必须在 [ 0 , 1 ] 之间, 即 x ∈ [ 0 , 1 ] 。所以, [ 0 , 1 ] 是闭集 首先证明[0, 1]是闭集。设x是[0, 1]的极限点,即存在[0, 1]中的点列{x_n}使得lim x_n = x。\\由于{x_n}中的每个元素都属于[0, 1],因此x的取值范围也必须在[0, 1]之间,\\即x ∈ [0, 1]。所以,[0, 1]是闭集 首先证明[0,1]是闭集。设x[0,1]的极限点,即存在[0,1]中的点列xn使得limxn=x由于xn中的每个元素都属于[0,1],因此x的取值范围也必须在[0,1]之间,x[0,1]。所以,[0,1]是闭集

  2. 有界性:显然,[0, 1]是有界的,其上界为1,下界为0。

  3. 开覆盖的有限子覆盖 设 U α 是 [ 0 , 1 ] 的一个开覆盖。对于每个 x ∈ [ 0 , 1 ] ,存在某个 U α 使得 x ∈ U α 。由于 U α 是开集, 因此存在某个 ε > 0 使得 ( x − ε , x + ε ) ⊂ U α 。我们可以选择一系列这样的开区间 ( x n − ε n , x n + ε n ) (其中 x n 是 [ 0 , 1 ] 中的点, ε n 是对应的正数), 使得这些开区间的并集覆盖 [ 0 , 1 ] 。由于 [ 0 , 1 ] 的长度是有限的, 因此我们可以找到有限个这样的开区间来覆盖 [ 0 , 1 ] 。 这些开区间的并集就是 U α 的一个有限子覆盖。 综上, [ 0 , 1 ] 是紧集。 设{U_α}是[0, 1]的一个开覆盖。对于每个x ∈ [0, 1],存在某个U_α使得x ∈ U_α。由于U_α是开集,\\因此存在某个ε > 0使得(x - ε, x + ε) ⊂ U_α。我们可以选择一系列这样的开区间(x_n - ε_n, x_n + ε_n)(其中x_n是[0, 1]中的点,ε_n是对应的正数),\\使得这些开区间的并集覆盖[0, 1]。由于[0, 1]的长度是有限的,\\因此我们可以找到有限个这样的开区间来覆盖[0, 1]。\\这些开区间的并集就是{U_α}的一个有限子覆盖。 \\综上,[0, 1]是紧集。 Uα[0,1]的一个开覆盖。对于每个x[0,1],存在某个Uα使得xUα。由于Uα是开集,因此存在某个ε>0使得(xε,x+ε)Uα。我们可以选择一系列这样的开区间(xnεn,xn+εn)(其中xn[0,1]中的点,εn是对应的正数),使得这些开区间的并集覆盖[0,1]。由于[0,1]的长度是有限的,因此我们可以找到有限个这样的开区间来覆盖[0,1]这些开区间的并集就是Uα的一个有限子覆盖。综上,[0,1]是紧集。

参考文献

1.文心一言
2.《实变函数论》

  • 19
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值