概率论原理精解【8】

度量空间

度量拓扑

  • 设 τ ρ 设\tau_\rho τρ R d R^d Rd上由通常度量 ρ \rho ρ诱导的度量拓扑
    1、称 τ ρ \tau_{\rho} τρ R d R^d Rd上的通常拓扑。
    2、 若 a , b ∈ R d ,开区间 ( a , b ) , ( − ∞ , b ) , ( a , ∞ ) 都是开集, 闭区间 [ a , b ] , ( − ∞ , b ] , [ a , ∞ ) 都是闭集,半开区间 ( a , b ] 或 [ a , b ) 不是开集也不是闭集 若a,b \in R^d,开区间(a,b),(-\infty,b),(a,\infty)都是开集,\\闭区间[a,b],(-\infty,b],[a,\infty)都是闭集,半开区间(a,b]或[a,b)不是开集也不是闭集 a,bRd,开区间(a,b)(,b),(a,)都是开集,闭区间[a,b](,b],[a,)都是闭集,半开区间(a,b][a,b)不是开集也不是闭集

以下内容来自文心一言的自动生成

  • 在数学上,通常拓扑是指定义在n维欧几里得空间(记作 R n \mathbb{R}^n Rn)上的一种特定的拓扑结构。
  • 这种拓扑结构是根据欧几里得空间的度量(即两点之间的距离)来定义的,它反映了欧几里得空间中点集的“接近性”或“邻近性”的直观概念。
  • 具体来说,在 R n \mathbb{R}^n Rn中,我们可以定义开球(open ball)为以某点为中心、以某个正数为半径的集合,该集合包含了所有与该中心点的距离小于该半径的点。然后,我们可以将 R n \mathbb{R}^n Rn中的所有开球(以及它们的并集)视为开集(open sets),这些开集连同它们的补集(即闭集,closed sets)以及空集和全集 R n \mathbb{R}^n Rn一起,构成了 R n \mathbb{R}^n Rn上的一个拓扑空间
  • 这个拓扑空间就被称为 R n \mathbb{R}^n Rn上的通常拓扑。在通常拓扑下, R n \mathbb{R}^n Rn具有许多重要的拓扑性质,比如它是连通的、道路连通的、局部连通的、可分的、第一可数的、第二可数的、仿紧的、亚紧的、全体正规的,等等。
  • 此外,由于它基于欧几里得度量,因此它还满足一切分离公理,包括T0、T1、T2(即Hausdorff性质)、T3(即正则性质)、T4(即正规性质)等。需要注意的是,虽然“通常拓扑”在 R n \mathbb{R}^n Rn中是自然且常用的,但在其他类型的空间(如离散空间、有限补空间等)上,也可能存在其他类型的拓扑结构。因此,在讨论拓扑时,我们需要明确所指的上下文和具体空间。

邻域与基

  • 设 ( X , τ ) 为拓扑空间, x ∈ N ⊂ X 设(X,\tau)为拓扑空间,x \in N \subset X (X,τ)为拓扑空间,xNX
  • 称 N 为 x 的一个邻域,如果存在 U ∈ τ ,使得 x ∈ U ⊂ N 称N为x的一个邻域,如果存在U \in \tau,使得x \in U \subset N Nx的一个邻域,如果存在Uτ,使得xUN
  • 包含点 x 的开集称为 x 的开邻域。 包含点x的开集称为x的开邻域。 包含点x的开集称为x的开邻域。
  • 点 x 的所有邻域组成的集族称为邻域系 N ( x ) 点x的所有邻域组成的集族称为邻域系\Nu(x) x的所有邻域组成的集族称为邻域系N(x)
  • -在一般拓扑学中,邻域是一个核心概念,用于描述拓扑空间中某一点周围的点的集合
  • 设 ( X , τ ) 为拓扑空间, G ⊂ X ,则 设(X,\tau)为拓扑空间,G \subset X,则 (X,τ)为拓扑空间,GX,则
    G ∈ τ < = > ∀ x ∈ G , G ∈ N ( x ) G 是开集,当且仅当 G 是它每一点的邻域 G \in \tau <=>\forall x \in G,G \in N(x) \\G是开集,当且仅当G是它每一点的邻域 Gτ<=>xG,GN(x)G是开集,当且仅当G是它每一点的邻域
  • 为了证明“G是开集,当且仅当G是它每一点的邻域”,我们可以按照以下步骤进行:

必要性证明(G是开集 => G是它每一点的邻域)

假设G是开集。

  1. 开集的定义:根据开集的定义,对于G中的任意一点 x x x,都存在一个以 x x x为中心,某个正数 ϵ \epsilon ϵ为半径的开球 B ( x , ϵ ) B(x, \epsilon) B(x,ϵ),使得 B ( x , ϵ ) ⊆ G B(x, \epsilon) \subseteq G B(x,ϵ)G
  2. 邻域的定义:对于任意点 x ∈ G x \in G xG,由于存在这样的开球 B ( x , ϵ ) ⊆ G B(x, \epsilon) \subseteq G B(x,ϵ)G,那么显然G包含了一个包含x的开集,即G是x的一个邻域。
  3. 结论:由于x是G中的任意一点,因此G是它每一点的邻域。

充分性证明(G是它每一点的邻域 => G是开集)

假设G是它每一点的邻域。

  1. 反证法开始:假设G不是开集。
  2. 存在非内点:由于G不是开集,根据开集的定义,G中至少存在一个点 x 0 x_0 x0,它不是G的内点。
  3. 邻域性质:但由题意知,G是 x 0 x_0 x0的邻域,即存在G中的一个开集U,使得 x 0 ∈ U ⊆ G x_0 \in U \subseteq G x0UG
  4. 内点矛盾:由于U是开集且 x 0 ∈ U x_0 \in U x0U,根据开集的定义, x 0 x_0 x0是U的内点,从而也是G的内点(因为U是G的子集)。这与我们的假设( x 0 x_0 x0不是G的内点)相矛盾。
  5. 结论:因此,我们的假设(G不是开集)是错误的,所以G必须是开集。

综上,我们证明了“G是开集,当且仅当G是它每一点的邻域”。

定义

X X X为一个拓扑空间, x ∈ X x \in X xX。点 x x x的邻域是 X X X的一个子集 N N N,使得存在 X X X的一个开集 U U U,满足 x ∈ U ⊆ N x \in U \subseteq N xUN。简而言之,邻域是一个包含了点 x x x的开集的子集。

性质

  1. 开邻域和闭邻域

    • 如果邻域 N N N同时是 X X X中的开集,则称 N N N x x x的开邻域。
    • 如果邻域 N N N同时是 X X X中的闭集(且包含 x x x),则称 N N N x x x的闭邻域。
  2. 去心邻域

    • 有时我们需要讨论不包含邻域中心点的邻域,这称为去心邻域。例如,点 x x x δ \delta δ邻域去掉中心 x x x后,称为点 x x x的去心 δ \delta δ邻域。
  3. 邻域基

    • 邻域基是点 x x x的所有邻域中最具代表性的那些邻域所组成的集族。简单来说,对于 x x x的任意邻域 V V V,总存在邻域基中的某邻域 U U U,使得 U ⊆ V U \subseteq V UV
    • 例如,在距离空间中,以 x x x为中心的所有开球就组成了 x x x的一个邻域基。
  4. 有限个交集的邻域性

    • 邻域的有限个交集仍然是邻域。即,如果 V 1 , V 2 , … , V n V_1, V_2, \ldots, V_n V1,V2,,Vn x x x的邻域,那么它们的交集 ⋂ i = 1 n V i \bigcap_{i=1}^{n} V_i i=1nVi也是 x x x的邻域。
  5. 开集的判定

    • 一个集合 U U U是开集当且仅当对于 U U U中的任意点 x x x,都存在 x x x的邻域 V V V,使得 V ⊆ U V \subseteq U VU

应用

邻域的概念在拓扑学中有着广泛的应用,它是定义拓扑空间、研究拓扑性质的基础。通过邻域,我们可以更深入地理解拓扑空间中的点、开集、闭集等基本概念,并进而探讨更复杂的拓扑性质,如连通性、紧致性等。

综上所述,一般拓扑空间的邻域是一个重要的概念,它为我们提供了一种描述空间中点周围结构的方式,并在拓扑学的研究中发挥着核心作用。

  • 设 ( X , τ ) 为拓扑空间 , B ⊂ τ ,称 B 是 X 的一个基,如果 ∀ G ∈ τ , ∃ B G ⊂ B s . t . G = ∪ B ∈ B G B 设(X,\tau)为拓扑空间,B\subset \tau,称B是X的一个基,如果\forall G \in \tau,\exist B_G \subset B s.t. G=\cup_{B \in B_G}B (X,τ)为拓扑空间,Bτ,称BX的一个基,如果Gτ,BGBs.t.G=BBGB

引用内容来自文心一言的自动生成
拓扑空间的基是拓扑学中的一个核心概念,它提供了一种描述和构造拓扑空间开集结构的方法。以下是关于拓扑空间的基的定义、性质、例子及例题的详细解释:

一、定义

拓扑空间的基(或称为拓扑基)是一个子集族,该子集族中的元素(称为基元素)满足以下条件:

  • 拓扑空间的每一个开集都可以表示为基元素中某些元素的并集。
  • 对于任意两个基元素 B 1 B_1 B1 B 2 B_2 B2,以及它们的交集 B 1 ∩ B 2 B_1 \cap B_2 B1B2中的任意一点 x x x,都存在一个基元素 B x B_x Bx,使得 x ∈ B x ⊂ B 1 ∩ B 2 x \in B_x \subset B_1 \cap B_2 xBxB1B2

二、性质

拓扑空间的基具有以下性质:

  1. 覆盖性:基元素能够覆盖拓扑空间中的所有点。
  2. 局部有限性(或称为相容性):对于任意两个基元素的交集,总能在其中找到一个更小的基元素来“填充”它。
  3. 唯一性:虽然拓扑空间的基不是唯一的,但由基生成的拓扑空间是唯一的。即,如果两个基生成的开集族相同,则它们生成的拓扑空间也相同。

三、例子

  1. 度量空间的球形邻域基:设 ( X , ρ ) (X, \rho) (X,ρ)是度量空间,则所有的球形邻域 { B ( x , r ) ∣ x ∈ X , r > 0 } \{B(x, r) | x \in X, r > 0\} {B(x,r)xX,r>0}(其中 B ( x , r ) B(x, r) B(x,r)表示以 x x x为球心、 r r r为半径的开球)构成 X X X的一组拓扑基。
  2. 离散空间的单点集基:在离散空间中,每一个单点集 { x } \{x\} {x}(其中 x ∈ X x \in X xX)都是开集,因此所有单点集构成的集合 { { x } ∣ x ∈ X } \{\{x\} | x \in X\} {{x}xX}是离散空间的一组拓扑基。
  3. 实数集的下限拓扑基:考虑实数集合 R \mathbb{R} R,令 B = { [ a , b ) ∣ a , b ∈ R , a < b } \mathcal{B} = \{[a, b) | a, b \in \mathbb{R}, a < b\} B={[a,b)a,bR,a<b},则 B \mathcal{B} B R \mathbb{R} R的一组拓扑基。这种拓扑称为实数集的下限拓扑,记为 R l \mathbb{R}_l Rl

四、例题

例题:证明实数集 R \mathbb{R} R在通常意义下的开区间 ( a , b ) (a, b) (a,b)可以由上述下限拓扑基 B = { [ a , b ) ∣ a , b ∈ R , a < b } \mathcal{B} = \{[a, b) | a, b \in \mathbb{R}, a < b\} B={[a,b)a,bR,a<b}中的元素通过并集运算得到。

证明

对于任意开区间 ( a , b ) (a, b) (a,b),我们可以将其表示为无限多个下限拓扑基元素的并集:

( a , b ) = ⋃ n = 1 ∞ [ a + 1 n , b ) (a, b) = \bigcup_{n=1}^\infty \left[ a + \frac{1}{n}, b \right) (a,b)=n=1[a+n1,b)

这是因为对于任意 x ∈ ( a , b ) x \in (a, b) x(a,b),总存在一个足够大的 n n n,使得 a + 1 n < x < b a + \frac{1}{n} < x < b a+n1<x<b,从而 x ∈ [ a + 1 n , b ) x \in \left[ a + \frac{1}{n}, b \right) x[a+n1,b)。由于这样的 n n n有无穷多个,因此 ( a , b ) (a, b) (a,b)可以表示为这些下限拓扑基元素的并集。

综上所述,实数集 R \mathbb{R} R在通常意义下的开区间可以由下限拓扑基 B \mathcal{B} B中的元素通过并集运算得到。

  • 设 ( X , τ ) 为拓扑空间, B ⊂ τ ,则 B 是 X 的一个基,当且仅当 ∀ G ∈ τ 以及 x ∈ G ,存在 B x ∈ B , 使得 x ∈ B x ⊂ G 设(X,\tau)为拓扑空间,B \subset \tau,则B是X的一个基,当且仅当\forall G \in \tau 以及 x \in G,存在B_x \in B,使得x \in B_x \subset G (X,τ)为拓扑空间,Bτ,则BX的一个基,当且仅当Gτ以及xG,存在BxB,使得xBxG
  • R d 中所有有限开区间所成的集族 { ( a , b ) : α , b ∈ R d , α < b } 是 R d 上通常拓扑的一个基 R^d 中所有有限开区间所成的集族 \{(a, b) :α,b \in R^d,α \lt b\} \\是R^d 上通常拓扑的一个基 Rd中所有有限开区间所成的集族{(a,b):α,bRd,α<b}Rd上通常拓扑的一个基

参考文献

1.文心一言
2.《测度论基础与高等概率论》

  • 24
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值