概率论原理精解【9】

集类

  • C是一个集类(以G的某些子集为元素的集合称为G的集类)
  • A i ∈ C , ∩ i = 1 n A i ∈ C , 此为有限交封闭 C 所得集类 C ∩ f A_i \in C,\cap_{i=1}^nA_i \in C,此为有限交封闭C所得集类C_{\cap f} AiC,i=1nAiC,此为有限交封闭C所得集类Cf
  • A n ∈ C , n ≥ 1 , ∩ n A n ∈ C , 此为可列交封闭 C 所得集类 C δ A_n \in C,n \ge 1,\cap_{n}A_n \in C,此为可列交封闭C所得集类C_{\delta} AnC,n1,nAnC,此为可列交封闭C所得集类Cδ
  • C Σ f 称为有限不交并封闭 C 所得集类 C_{\Sigma f}称为有限不交并封闭C所得集类 CΣf称为有限不交并封闭C所得集类
  • ∪ i = 1 n A i ∈ C , 此为有限并封闭 C 所得集类 C ∪ f \cup_{i=1}^nA_i \in C,此为有限并封闭C所得集类C_{\cup f} i=1nAiC,此为有限并封闭C所得集类Cf
  • C σ 为可列并封闭 C 所得集类 C_{\sigma}为可列并封闭C所得集类 Cσ为可列并封闭C所得集类
  • C Σ σ 为可列不交并封闭 C 所得集类 C_{\Sigma\sigma}为可列不交并封闭C所得集类 CΣσ为可列不交并封闭C所得集类
  • 1. 如果 C 对有限交封闭,称为 π 类 2. 如果 ∅ ∈ C ,且有 A , B ∈ C = > A ∩ B ∈ C , A \ B ∈ C Σ f , C 称为半环。 3. C 是半环,且 G ∈ C , C 是半代数。 4. C 对有限交和取余集运算封闭,且 G ∈ C , ∅ ∈ C , C 称为代数或域。 5. C 对可列交和取余集运算封闭,且 G ∈ C , ∅ ∈ C , C 称为 σ 代数 6. C 对单调序列极限封闭, C 称为单调类 7. C 称为 λ 类,则: ( 1 ) G ∈ C ( 2 ) A , B ∈ C , B ⊂ A = > A \ B ∈ C ( 3 ) A n ∈ C , n ≥ 1 , A n ↑ A = > A ∈ C 1.如果C对有限交封闭,称为\pi类 \\2.如果\emptyset \in C,且有A,B \in C=>A\cap B \in C,A \backslash B \in C_{\Sigma f},C称为半环。 \\3.C是半环,且G \in C,C是半代数。 \\4.C对有限交和取余集运算封闭,且G \in C,\empty \in C,C称为代数或域。 \\5.C对可列交和取余集运算封闭,且G \in C,\empty \in C,C称为\sigma代数 \\6.C对单调序列极限封闭,C称为单调类 \\7.C称为\lambda类,则: \\(1)G \in C \\(2)A,B \in C , B \subset A=>A \backslash B \in C \\(3) A_n \in C,n \ge 1,A_n \uparrow A => A \in C 1.如果C对有限交封闭,称为π2.如果C,且有A,BC=>ABC,A\BCΣfC称为半环。3.C是半环,且GC,C是半代数。4.C对有限交和取余集运算封闭,且GCCC称为代数或域。5.C对可列交和取余集运算封闭,且GCCC称为σ代数6.C对单调序列极限封闭,C称为单调类7.C称为λ类,则:(1)GC(2)A,BC,BA=>A\BC(3)AnC,n1,AnA=>AC
  • 对 G 上的任一非空集类 F , 存在包含 F 的最小 σ 代数、 λ 类和单调类, 记为 σ ( F ) 、 λ ( F ) 和 m ( F ) , m ( F ) ⊂ λ ( F ) ⊂ σ ( F ) 对G上的任一非空集类F,存在包含F的最小\sigma代数、\lambda类和单调类,\\记为\sigma(F)、\lambda(F)和m(F),m(F)\subset \lambda(F) \subset \sigma(F) G上的任一非空集类F,存在包含F的最小σ代数、λ类和单调类,记为σ(F)λ(F)m(F)m(F)λ(F)σ(F)

C 为一集类, 1. 若 C 为代数,则 m ( C ) = σ ( C ) 2. 若 C 为一 π 类,则 λ ( C ) = σ ( C ) C为一集类, \\1.若C为代数,则m(C)= \sigma (C) \\2.若C为一\pi类,则\lambda(C)= \sigma (C) C为一集类,1.C为代数,则m(C)=σ(C)2.C为一π类,则λ(C)=σ(C)

  • 设 C 和 F 为两个集类,且 C ⊂ F 1. 若 C 为代数, F 为单调类,则 σ ( C ) ⊂ F 2. 若 C 为 π 类,且 F 为 λ 类,则 σ ( C ) ⊂ F 设C和F为两个集类,且C \subset F \\1.若C为代数,F为单调类,则\sigma(C) \subset F \\2.若C为\pi类,且F为\lambda类,则\sigma(C) \subset F CF为两个集类,且CF1.C为代数,F为单调类,则σ(C)F2.Cπ类,且Fλ类,则σ(C)F

  • C 为一集类, 1. 若要 m ( C ) = σ ( C ) ,则必须且只需 A ∈ C = > A c ∈ m ( C ) , A , B ∈ C = > A ∩ B ∈ m ( C ) 2. 若要 λ ( C ) = σ ( C ) ,必须且只需 A , B ∈ C = > A ∩ B ∈ λ ( C ) C为一集类, \\1.若要m(C)= \sigma (C),则必须且只需 \\A \in C=>A^c \in m(C),A,B \in C=>A \cap B \in m(C) \\2.若要\lambda(C)=\sigma(C),必须且只需 \\A,B \in C => A \cap B \in \lambda (C) C为一集类,1.若要m(C)=σ(C),则必须且只需AC=>Acm(C)A,BC=>ABm(C)2.若要λ(C)=σ(C),必须且只需A,BC=>ABλ(C)

  • C 为一集类,若它满足下列条件之一,则有 m ( C ) = σ ( C ) 1. A , B ∈ C = > A ∩ B ∈ C , A ∈ C = > A c ∈ C δ 2. A , B ∈ C = > A ∪ B ∈ C , A ∈ C = > A c ∈ C δ C为一集类,若它满足下列条件之一,则有m(C)=\sigma(C) \\1.A,B \in C=>A \cap B \in C,A \in C=>A^c \in C_{\delta} \\2.A,B \in C=>A \cup B \in C,A \in C=>A^c \in C_{\delta} C为一集类,若它满足下列条件之一,则有m(C)=σ(C)1.A,BC=>ABCAC=>AcCδ2.A,BC=>ABC,AC=>AcCδ

拓扑空间

  • 设 X 为非空集合, β ⊂ P ( X ) 设X为非空集合,\beta \subset P(X) X为非空集合,βP(X)
    1. 若 β 是 X 上某拓扑的基,则 ( 1 ) ∪ B ∈ β B = X ( 2 ) 若 B 1 、 B 2 ∈ β 且 x ∈ B 1 ∩ B 2 ,则 ∃ B x ∈ β , s . t . x ∈ β , x ∈ B x ⊂ B 1 ∩ B 2 2. 若 β 满足 ( 1 ) 和 ( 2 ) ,则存在唯一的拓扑 τ = { G ⊂ X : ∃ β G ⊂ β , s . t . G = ∪ B ∈ β G B } 以 β 为基,并称这个拓扑是以 β 为基生成的拓扑。 1.若\beta 是X上某拓扑的基,则 \\(1)\cup_{B \in \beta}B=X \\(2)若B_1、B_2 \in \beta且x \in B_1\cap B_2,则\exists B_x \in \beta,s.t. x \in \beta,x \in B_x \subset B_1\cap B_2 \\2.若\beta满足(1)和(2),则存在唯一的拓扑 \\\tau=\{G \subset X:\exists \beta_G \subset \beta ,s.t.G=\cup_{B\in \beta_G}B\} \\以\beta为基,并称这个拓扑是以\beta为基生成的拓扑。 1.βX上某拓扑的基,则(1)BβB=X(2)B1B2βxB1B2,则Bxβ,s.t.xβxBxB1B22.β满足(1)(2),则存在唯一的拓扑τ={GX:βGβ,s.t.G=BβGB}β为基,并称这个拓扑是以β为基生成的拓扑。
  • 设 β 是拓扑空间 X 的一个基,若 β 是可数的,则称 X 具有可数基 设\beta是拓扑空间X的一个基,若\beta是可数的,则称X具有可数基 β是拓扑空间X的一个基,若β是可数的,则称X具有可数基
  • 例题

下面内容由文心一言自动生成
拓扑空间是数学中的一个重要概念,它允许我们在不考虑距离和角度的具体度量下,研究空间的几何性质和变换。在拓扑空间中,“基”通常指的是一组特定的开集,这些开集的并集能够生成整个空间上的拓扑结构。以下是一个关于拓扑空间基的例题:

题目:设 X X X是一个集合, X X X上的一组子集 B \mathcal{B} B满足以下条件:

  1. B \mathcal{B} B中的任意两个元素的交集可以表示为 B \mathcal{B} B中某些元素的并集。
  2. X X X可以表示为 B \mathcal{B} B中某些元素的并集。

证明:由 B \mathcal{B} B生成的拓扑空间 ( X , T ) (X, \mathcal{T}) (X,T)中, B \mathcal{B} B T \mathcal{T} T的一个基。

证明

  1. 定义由 B \mathcal{B} B生成的拓扑

首先,我们定义由 B \mathcal{B} B生成的拓扑 T \mathcal{T} T。设 T \mathcal{T} T是包含 B \mathcal{B} B的最小集合,且满足以下条件:

  • ∅ ∈ T \emptyset \in \mathcal{T} T(空集是任何拓扑的一部分)。
  • 如果 U 1 , U 2 , … ∈ T U_1, U_2, \ldots \in \mathcal{T} U1,U2,T,则 ⋃ i = 1 ∞ U i ∈ T \bigcup_{i=1}^\infty U_i \in \mathcal{T} i=1UiT(任意多个开集的并集是开集)。
  • 如果 U 1 , U 2 ∈ T U_1, U_2 \in \mathcal{T} U1,U2T,则 U 1 ∩ U 2 ∈ T U_1 \cap U_2 \in \mathcal{T} U1U2T(有限多个开集的交集是开集)。

由于 B \mathcal{B} B满足题目中的条件,且我们要求 T \mathcal{T} T是最小的这样的集合,因此可以通过不断添加由 B \mathcal{B} B中元素通过并集和有限交集运算得到的集合来构造 T \mathcal{T} T

  1. 证明 B \mathcal{B} B T \mathcal{T} T的基

    根据拓扑空间基的定义,一个集合 B \mathcal{B} B是拓扑空间 ( X , T ) (X, \mathcal{T}) (X,T)的基,如果对于 T \mathcal{T} T中的任意元素 U U U(即任意开集),都存在 B \mathcal{B} B中的元素 B 1 , B 2 , … B_1, B_2, \ldots B1,B2,(可能有无穷多个),使得 U = ⋃ i = 1 ∞ B i U = \bigcup_{i=1}^\infty B_i U=i=1Bi

    现在,对于 T \mathcal{T} T中的任意元素 U U U,由于 U ∈ T U \in \mathcal{T} UT,且 T \mathcal{T} T是由 B \mathcal{B} B通过并集和有限交集运算得到的,因此我们可以使用归纳法(或超限归纳法,如果涉及到无穷多个集合)来证明 U U U可以由 B \mathcal{B} B中的元素通过并集得到。具体来说,如果 U U U本身就是 B \mathcal{B} B中的元素,则结论显然成立。如果 U U U不是 B \mathcal{B} B中的元素,则 U U U必然是通过并集和有限交集运算从 B \mathcal{B} B中的元素得到的。由于并集和有限交集运算可以相互转化(即,可以通过并集和补集运算来表示有限交集),我们可以最终将 U U U表示为 B \mathcal{B} B中某些元素的并集。

注意:这里的证明依赖于 B \mathcal{B} B满足题目中的条件,特别是第一个条件(任意两个元素的交集可以表示为某些元素的并集),这保证了在通过并集和有限交集运算构造 T \mathcal{T} T时,不会超出由 B \mathcal{B} B生成的集合范围。

  1. 结论

    因此,我们证明了由 B \mathcal{B} B生成的拓扑空间 ( X , T ) (X, \mathcal{T}) (X,T)中, B \mathcal{B} B T \mathcal{T} T的一个基。

注意

  • 这个例题是一个较为抽象的证明题,旨在理解拓扑空间基的概念和性质。
  • 在实际应用中,拓扑空间的基往往是具体给出的,例如实数集上的开区间集合是实数集上标准拓扑的一个基。
  • 拓扑空间的基不是唯一的,但不同的基会生成相同的拓扑结构。

参考文献

1.文心一言
2.《测度论基础与高等概率论》
3.《测度论讲义》第三版

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值