初等数论精解【8】

文章目录

同余

基础

  • a , b 是整数, m 是一个固定的正整数,当 m ∣ ( a − b ) (即 m 能整除 a − b )时 , 称 a 、 b 对模 m 同余,记作 a ≡ b ( m o d m ) , 否则 a ≢ b ( m o d m ) a,b是整数,m是一个固定的正整数,当m|(a-b)(即m能整除a-b)时,称a、b对模m同余,记作a \equiv b \quad(mod \quad m),否则a\not \equiv b\quad(mod \quad m) a,b是整数,m是一个固定的正整数,当m(ab)(即m能整除ab)时,ab对模m同余,记作ab(modm),否则ab(modm)
    比如: 32 ≡ 12 ( m o d 4 ) , 4 ∣ ( 32 − 12 ) 比如:32 \equiv 12\quad (mod\quad 4),4|(32-12) 比如:3212(mod4),4∣(3212)
  • a ≡ a ( m o d m ) a \equiv a \quad(mod \quad m) aa(modm)
  • a ≡ b ( m o d m ) = > b ≡ a ( m o d m ) , (这个显然,同余关系构成剩余类,构成等价关系,但这是抽象代数,不属于初等数论) a \equiv b \quad(mod \quad m)=>b \equiv a \quad(mod \quad m),\\(这个显然,同余关系构成剩余类,构成等价关系,但这是抽象代数,不属于初等数论) ab(modm)=>ba(modm)(这个显然,同余关系构成剩余类,构成等价关系,但这是抽象代数,不属于初等数论)
  • a ≡ b ( m o d m ) = > a − b = m t , t ∈ Z a \equiv b \quad(mod \quad m)=>a-b=mt,t \in Z ab(modm)=>ab=mt,tZ
  • a ≡ b ( m o d m ) , c ≡ d ( m o d m ) = > a + c ≡ b + d ( m o d m ) a \equiv b \quad(mod \quad m),c \equiv d \quad(mod \quad m)=>a+c \equiv b+d\quad(mod \quad m) ab(modm),cd(modm)=>a+cb+d(modm)
  • a ≡ b ( m o d m ) , c ≡ d ( m o d m ) = > a − c ≡ b − d ( m o d m ) a \equiv b \quad(mod \quad m),c \equiv d \quad(mod \quad m)=>a-c \equiv b-d\quad(mod \quad m) ab(modm),cd(modm)=>acbd(modm)
  • a ≡ b ( m o d m ) = > a c ≡ b c ( m o d m ) a \equiv b \quad(mod \quad m)=>ac \equiv bc\quad(mod \quad m) ab(modm)=>acbc(modm)
  • a ≡ b ( m o d m ) , c ≡ d ( m o d m ) = > a c ≡ b d ( m o d m ) a \equiv b \quad(mod \quad m),c \equiv d \quad(mod \quad m)=>ac \equiv bd\quad(mod \quad m) ab(modm),cd(modm)=>acbd(modm)
  • a ≡ b ( m o d m ) = > a n ≡ b n ( m o d m ) a \equiv b \quad(mod \quad m)=>a^n \equiv b^n\quad(mod \quad m) ab(modm)=>anbn(modm)
  • 如果 a 1 , a 2 , . . . , b 1 , b 2 , . . . , b n 都是正整数,而 m , n 都是正整数,则当 a 1 ≡ b 1 ( m o d m ) a 2 ≡ b 2 ( m o d m ) . . . a n ≡ b n ( m o d m ) 则 a 1 + a 2 + . . . + a n ≡ b 1 + b 2 + . . . + b n ( m o d m ) 如果a_1,a_2,...,b_1,b_2,...,b_n都是正整数,而m,n都是正整数,则当 \\a_1\equiv b_1(mod \quad m) \\a_2\equiv b_2(mod \quad m) \\... \\a_n\equiv b_n(mod \quad m) \\则a_1+a_2+...+a_n\equiv b_1+b_2+...+b_n(mod \quad m) 如果a1,a2...,b1,b2,...,bn都是正整数,而m,n都是正整数,则当a1b1(modm)a2b2(modm)...anbn(modm)a1+a2+...+anb1+b2+...+bn(modm)
  • 例:5781308能被9整除吗?
    1. 5 × 1 0 6 + 7 × 1 0 5 + 8 × 1 0 4 + 1 × 1 0 3 + 3 × 1 0 2 + 0 × 1 0 1 + 8 10 m o d 9 = 1 , 1 0 n ≡ 1 ( m o d 9 ) , 1 0 6 ≡ 1 ( m o d 9 ) , 5 × 1 0 6 ≡ 5 × 1 ( m o d 9 ) 5781308 = 5 + 7 + 8 + 1 + 3 + 0 + 8 = 32 9 ∤ 32 5781308 不能被 9 整除 2. 能被 7 整除吗 10 m o d 7 = 3 , 1 0 n ≡ 3 ( m o d 7 ) , 1 0 6 ≡ 3 ( m o d 7 ) , 5 × 1 0 6 ≡ 5 × 3 ( m o d 7 ) 5781308 = 5 ∗ 3 + 7 ∗ 3 + 8 ∗ 3 + 1 ∗ 3 + 3 ∗ 3 + 0 ∗ 3 + 8 ∗ 3 = 96 , 7 ∤ 96 5781308 不能被 7 整除 3. 能被 4 整除吗 10 m o d 4 = 2 , 1 0 n ≡ 2 ( m o d 4 ) , 1 0 6 ≡ 2 ( m o d 4 ) , 5 × 1 0 6 ≡ 5 × 2 ( m o d 4 ) 5781308 = 5 ∗ 2 + 7 ∗ 2 + 8 ∗ 2 + 1 ∗ 2 + 3 ∗ 2 + 0 ∗ 2 + 8 ∗ 2 = 64 , 4 ∣ 64 5781308 能被 4 整除 1. \\5\times10^6+7\times10^5+8\times10^4+1\times10^3+3\times10^2+0\times10^1+8 \\10\quad mod \quad 9=1,10^n\equiv1(mod\quad 9),10^6\equiv 1(mod\quad 9),5\times10^6\equiv 5\times1(mod\quad9) \\5781308=5+7+8+1+3+0+8=32 \\9 \nmid 32 \\5781308不能被9整除 \\2.能被7整除吗 \\10\quad mod \quad 7=3,10^n\equiv3(mod\quad 7),10^6\equiv 3(mod\quad 7),5\times10^6\equiv 5\times3(mod\quad7) \\5781308=5*3+7*3+8*3+1*3+3*3+0*3+8*3=96,7\nmid96 \\5781308不能被7整除 \\3.能被4整除吗 \\10\quad mod \quad 4=2,10^n\equiv2(mod\quad 4),10^6\equiv 2(mod\quad 4),5\times10^6\equiv 5\times2(mod\quad4) \\5781308=5*2+7*2+8*2+1*2+3*2+0*2+8*2=64,4\mid 64 \\5781308能被4整除 1.5×106+7×105+8×104+1×103+3×102+0×101+810mod9=1,10n1(mod9),1061(mod9),5×1065×1(mod9)5781308=5+7+8+1+3+0+8=329325781308不能被9整除2.能被7整除吗10mod7=3,10n3(mod7),1063(mod7),5×1065×3(mod7)5781308=53+73+83+13+33+03+83=96,7965781308不能被7整除3.能被4整除吗10mod4=2,10n2(mod4),1062(mod4),5×1065×2(mod4)5781308=52+72+82+12+32+02+82=64,4645781308能被4整除
  • 例: 7742238能被6整数吗?
    1. 7 × 1 0 6 + 7 × 1 0 5 + 4 × 1 0 4 + 2 × 1 0 3 + 2 × 1 0 2 + 3 × 1 0 1 + 8 10 m o d 6 = 4 , 1 0 n ≡ 4 ( m o d 6 ) , 1 0 6 ≡ 4 ( m o d 6 ) , 7 × 1 0 6 ≡ 7 × 4 ( m o d 9 ) 7742238 = 7 ∗ 4 + 7 ∗ 4 + 4 ∗ 4 + 2 ∗ 4 + 2 ∗ 4 + 3 ∗ 4 + 8 ∗ 4 = 132 6 ∣ 132 5781308 能被 6 整除 \\1. \\7\times10^6+7\times10^5+4\times10^4+2\times10^3+2\times10^2+3\times10^1+8 \\10\quad mod \quad 6=4,10^n\equiv4(mod\quad6),10^6\equiv 4(mod\quad 6),7\times10^6\equiv 7\times4(mod\quad9) \\7742238=7*4+7*4+4*4+2*4+2*4+3*4+8*4=132 \\6 \mid 132 \\5781308能被6整除 1.7×106+7×105+4×104+2×103+2×102+3×101+810mod6=4,10n4(mod6),1064(mod6),7×1067×4(mod9)7742238=74+74+44+24+24+34+84=13261325781308能被6整除
  • 弃九法
    a = a n 1 0 n + a n − 1 1 0 n − 1 + . . . + a 0 b = b n 1 0 n + b n − 1 1 0 n − 1 + . . . + b 0 a b = P P = c l 1 0 l + c l − 1 1 0 l − 1 + . . . + c 0 a ≡ a n + a n − 1 + . . . + a 0 ( m o d 9 ) b ≡ b m + b m − 1 + . . . + b 0 ( m o d 9 ) P ≡ c l + c l − 1 + . . . + c 0 ( m o d 9 ) ( a n + a n − 1 + . . . + a 0 ) ( b m + b m − 1 + . . . + b 0 ) ≡ c l + c l − 1 + . . . + c 0 ( m o d 9 ) 特别注意,上面这个式子不成立,则 a b ≠ P 但上面式子如果成立,不能说 a b = P a=a_n10^n+a_{n-1}10^{n-1}+...+a_0 \\b=b_n10^n+b_{n-1}10^{n-1}+...+b_0 \\ab=P \\P=c_l10^l+c_{l-1}10^{l-1}+...+c_0 \\a\equiv a_n+a_{n-1}+...+a_0(mod\quad9) \\b\equiv b_m+b_{m-1}+...+b_0(mod\quad9) \\P\equiv c_l+c_{l-1}+...+c_0(mod\quad9) \\(a_n+a_{n-1}+...+a_0)(b_m+b_{m-1}+...+b_0)\equiv c_l+c_{l-1}+...+c_0(mod\quad9) \\特别注意,上面这个式子不成立,则ab\ne P \\但上面式子如果成立,不能说ab=P a=an10n+an110n1+...+a0b=bn10n+bn110n1+...+b0ab=PP=cl10l+cl110l1+...+c0aan+an1+...+a0(mod9)bbm+bm1+...+b0(mod9)Pcl+cl1+...+c0(mod9)(an+an1+...+a0)(bm+bm1+...+b0)cl+cl1+...+c0(mod9)特别注意,上面这个式子不成立,则ab=P但上面式子如果成立,不能说ab=P
  • 2431 ∗ 92 = 93452 ? 2431*92=93452? 243192=93452?
    2431 = 2 + 4 + 3 + 1 = 10 ≡ 1 ( m o d 9 ) 92 = 9 + 2 = 11 ≡ 2 ( m o d 9 ) 93452 = 9 + 3 + 4 + 5 + 2 = 23 ≡ 5 ( m o d 9 ) 1 × 2 = 2 ≢ 5 ( m o d 9 ) 所以上面等式不成立。 2431=2+4+3+1=10\equiv1(mod\quad9) \\92=9+2=11\equiv 2(mod \quad 9) \\93452=9+3+4+5+2=23\equiv5(mod\quad 9) \\1\times2=2\not \equiv5(mod\quad9) \\所以上面等式不成立。 2431=2+4+3+1=101(mod9)92=9+2=112mod9)93452=9+3+4+5+2=235(mod9)1×2=25(mod9)所以上面等式不成立。

参考文献

1.文心一言
2.《初等数论》陈景润

  • 6
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值