高等代数精解【2】

线性空间与线性变换

线性空间

  • R n 中向量组的线性相关性 R^n中向量组的线性相关性 Rn中向量组的线性相关性

下面内容来自文心一言的自动生成。
R n R^n Rn中,向量组的线性相关性是一个重要的概念,它描述了向量组中的向量是否可以通过线性组合得到零向量,同时线性组合的系数不全为零。

定义

R n R^n Rn中的向量组为 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm(其中 m ≥ 1 m \geq 1 m1),如果存在不全为零的标量 k 1 , k 2 , … , k m k_1, k_2, \ldots, k_m k1,k2,,km,使得

k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0 k1α1+k2α2++kmαm=0

则称向量组 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm是线性相关的。否则,称它们是线性无关的。

性质

  1. 零向量与任何向量都线性相关:如果向量组中包含零向量,则该向量组线性相关。

  2. 单个非零向量线性无关:只含有一个非零向量的向量组是线性无关的。

  3. 向量组线性相关的充要条件:向量组 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm线性相关的充要条件是存在某个向量(不妨设为 α m \alpha_m αm)可以由其余向量线性表示,即存在标量 k 1 , k 2 , … , k m − 1 k_1, k_2, \ldots, k_{m-1} k1,k2,,km1,使得

    α m = k 1 α 1 + k 2 α 2 + ⋯ + k m − 1 α m − 1 \alpha_m = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{m-1}\alpha_{m-1} αm=k1α1+k2α2++km1αm1

  4. 向量组线性无关的充要条件:向量组 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm线性无关的充要条件是向量组构成的矩阵的秩等于向量的个数,即 r a n k ( A ) = m rank(A) = m rank(A)=m,其中 A = ( α 1 , α 2 , … , α m ) A = (\alpha_1, \alpha_2, \ldots, \alpha_m) A=(α1,α2,,αm)

  5. 增加向量的性质:如果向量组 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm线性相关,那么向其中增加任何向量(包括零向量或已存在的向量)后,新的向量组仍然线性相关。

  6. 减少向量的性质:如果向量组 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm线性无关,而向量组 α 1 , α 2 , … , α m , α m + 1 \alpha_1, \alpha_2, \ldots, \alpha_m, \alpha_{m+1} α1,α2,,αm,αm+1线性相关,那么向量 α m + 1 \alpha_{m+1} αm+1可以由 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm线性表示,且表示方式是唯一的。

判定方法

  1. 行列式法:如果向量组 α 1 , α 2 , … , α m \alpha_1, \alpha_2, \ldots, \alpha_m α1,α2,,αm构成的矩阵 A A A的行列式 ∣ A ∣ ≠ 0 |A| \neq 0 A=0,则向量组线性无关;如果 ∣ A ∣ = 0 |A| = 0 A=0,则向量组线性相关。但注意,当 m > n m > n m>n时,矩阵 A A A是长方阵,其行列式自然为零,此时需要其他方法判断。

  2. 秩的方法:计算向量组构成的矩阵的秩,如果秩等于向量的个数,则向量组线性无关;如果秩小于向量的个数,则向量组线性相关。

  3. 线性组合法:尝试通过线性组合得到零向量,并检查是否存在非零解。

示例

考虑 R 3 R^3 R3中的向量组 α 1 = ( 1 , 0 , 0 ) \alpha_1 = (1, 0, 0) α1=(1,0,0) α 2 = ( 0 , 1 , 0 ) \alpha_2 = (0, 1, 0) α2=(0,1,0) α 3 = ( 1 , 1 , 0 ) \alpha_3 = (1, 1, 0) α3=(1,1,0)

  • 矩阵 A = ( α 1 , α 2 , α 3 ) = ( 1 0 1 0 1 1 0 0 0 ) A = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} A=(α1,α2,α3)= 100010110
  • 计算秩: r a n k ( A ) = 2 < 3 rank(A) = 2 < 3 rank(A)=2<3
  • 因此,向量组 α 1 , α 2 , α 3 \alpha_1, \alpha_2, \alpha_3 α1,α2,α3线性相关。实际上, α 3 = α 1 + α 2 \alpha_3 = \alpha_1 + \alpha_2 α3=α1+α2
  • 线性空间例题
    线性空间是数学中的一个重要概念,主要涉及向量空间及其上的线性变换。以下是一些线性空间的例题,这些例题旨在帮助理解线性空间的基本概念、性质以及运算规律。

下面内容来自文心一言的自动生成。

例题一:判断集合是否为线性空间

题目:检验下列集合对于给定的加法和数乘运算是否构成实数域R上的线性空间:

  1. 平面上不平行于某一固定向量的全部向量,关于通常的向量的加法及数乘运算。
  2. 全体2维实向量所组成的集合V,关于通常的向量的加法及如下定义的数乘运算:k ⊗ (a,b) = (ka, 0)。

解析

  1. 对于第一个集合,虽然向量的加法和数乘在实数域R上是封闭的,但由于不平行于某一固定向量的向量集在加法下不封闭(例如,两个不平行于该固定向量的向量相加可能得到平行于该固定向量的向量),因此不满足线性空间的定义。
  2. 对于第二个集合,其加法和数乘运算在V上不是封闭的(例如,数乘运算k ⊗ (a,b) = (ka, 0)的结果总是第二个分量为0的向量,而V包含所有2维实向量)。因此,它也不满足线性空间的定义。

结论:上述两个集合都不是实数域R上的线性空间。

例题二:验证子空间

题目:设V是全体2阶实方阵组成的集合,W是形如 ( a a + b a b ) \begin{pmatrix} a & a+b \\ a & b \end{pmatrix} (aaa+bb)的2阶实方阵组成的集合。验证W是否是V的子空间。

解析

  1. 加法封闭性:对于W中任意两元素A和B及其对应的实数a, b, c, d,有 A + B = ( a a + b a b ) + ( c c + d c d ) = ( a + c ( a + c ) + ( b + d ) a + c b + d ) A + B = \begin{pmatrix} a & a+b \\ a & b \end{pmatrix} + \begin{pmatrix} c & c+d \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & (a+c)+(b+d) \\ a+c & b+d \end{pmatrix} A+B=(aaa+bb)+(ccc+dd)=(a+ca+c(a+c)+(b+d)b+d)这仍然是W中的元素。

  2. 数乘封闭性:对于W中任意元素A和任意实数k,有 k A = k ( a a + b a b ) = ( k a k ( a + b ) k a k b ) kA = k \begin{pmatrix} a & a+b \\ a & b \end{pmatrix} = \begin{pmatrix} ka & k(a+b) \\ ka & kb \end{pmatrix} kA=k(aaa+bb)=(kakak(a+b)kb)这也是W中的元素。

  3. 包含零元素:显然, ( 0 0 0 0 ) \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} (0000)是W中的元素(当a=b=0时)。

结论:W是V的子空间。

例题三:求过渡矩阵

题目:设α₁, α₂, α₃是R³的一组基,求从基α₁, α₂, α₃到基β₁=α₁+α₂, β₂=α₂+α₃, β₃=α₃+α₁的过渡矩阵。

解析

设过渡矩阵为A,则有 A ( α 1 α 2 α 3 ) = ( β 1 β 2 β 3 ) A \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} A α1α2α3 = β1β2β3 A ( α 1 α 2 α 3 ) = ( α 1 + α 2 α 2 + α 3 α 3 + α 1 ) A \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \alpha_1 + \alpha_2 \\ \alpha_2 + \alpha_3 \\ \alpha_3 + \alpha_1 \end{pmatrix} A α1α2α3 = α1+α2α2+α3α3+α1
通过解这个方程组,可以得到过渡矩阵A的元素。

结论:过渡矩阵A的具体形式需要通过解方程组来得到,但一般形式为 A = ( 1 1 0 0 1 1 1 0 1 ) A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} A= 101110011
注意:这里的结论是基于题目给出的基和新基的形式直接给出的,实际求解时需要通过解方程组来验证。

以上例题涵盖了线性空间的基本概念、子空间的验证以及过渡矩阵的求解等方面,有助于深入理解线性空间的理论和应用。

  • 线性子空间
    线性子空间(又称向量子空间,简称子空间)是线性代数中的一个重要概念,它指的是在一个线性空间V中的一个非空向量子集W,该子集W满足以下两个条件:
  1. 加法封闭性:对于任意的u、v∈W,它们的和u+v也属于W。
  2. 数乘封闭性:对于任意的k(k是定义线性空间V的域F中的元素,F可以是实数域或复数域等)和u∈W,k与u的数乘ku也属于W。

下面内容来自文心一言的自动生成。
定义与性质

  • 定义:设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间(或向量子空间),或简称子空间。
  • 性质
    子空间中零向量存在且唯一。
    子空间对加法运算和标量乘法封闭。
    单位向量不一定属于子空间。
    如果一个向量集合可以生成一个子空间,那么这个集合就是子空间的基。
    如果子空间S和T的交为空向量,则S+T是直和。
    任何一个向量都可以唯一地表示为子空间的一个系数线性组合。

示例

  • 零子空间:在线性空间中,由单个的零向量所组成的子集合是一个线性子空间,称为零子空间。
  • 平凡子空间:线性空间V自身与单独一个零向量都是V的线性子空间。这两个特殊的子空间称为V的平凡子空间;除平凡子空间外的线性子空间称为V的非平凡子空间。
  • 多项式空间:在全体实函数组成的空间中,所有的实系数多项式组成一个子空间。
  • 解空间:在线性空间中,齐次线性方程组的全部解向量组成一个子空间,称为齐次线性方程组的解空间。

应用

线性子空间在多个领域有着广泛的应用,如计算机图形学、信号处理、优化理论以及深度学习等。在深度学习中,不同的表示子空间通常是指模型通过不同的参数(如权重矩阵)将输入数据映射到不同的高维空间,这些空间被称为表示子空间。每个子空间都能够捕获输入数据中不同的特征或模式,对于模型处理复杂数据和提高性能具有重要作用。

总结

线性子空间是线性空间中的一个重要概念,它满足特定的封闭性条件,具有一系列独特的性质,并在多个领域有着广泛的应用。通过理解线性子空间的概念和性质,我们可以更好地应用线性代数理论解决实际问题。

  • 过渡矩阵
    过渡矩阵是线性代数中的一个重要概念,它用于描述线性空间中一个基到另一个基的转换关系。具体来说,假设有两个基A和B,由基A到基B的过渡矩阵P被定义为 P = M a t A ( B ) P=Mat_A(B) P=MatA(B),即P是基B在基A下的坐标矩阵。这个矩阵满足关系B=AP,表示基B可以通过基A乘以过渡矩阵P得到。过渡矩阵是基与基之间的一个可逆线性变换,它描述了两组基之间的线性关系。

下面内容来自文心一言的自动生成。
过渡矩阵的计算

过渡矩阵的计算通常涉及以下几个步骤:

  1. 确定基向量:首先明确两组基A和B的具体向量。
  2. 构建方程组:利用过渡矩阵的定义B=AP,将基B的向量表示为基A的向量与过渡矩阵P的乘积。这通常会导致一个线性方程组。
  3. 求解方程组:通过求解这个线性方程组,可以得到过渡矩阵P的元素。

例题解析

以下是一个具体的例题,用于说明过渡矩阵的计算过程:

例题:设矩阵A的特征多项式为 ∣ λ E − A ∣ = ( λ − 1 ) ( λ − 3 ) 2 |λE−A|=(λ−1)(λ−3)² λEA=(λ1)(λ3)2,特征值为1和3(其中3为二重根)。求矩阵A的若尔当标准形J及过渡矩阵P,使得 P − 1 A P = J P^{-1}AP=J P1AP=J

  1. 确定若尔当标准形J

    • 由于特征值为1和3(其中3为二重根),且没有给出具体的若尔当块结构,我们可以假设最简单的若尔当标准形,即J为对角线上为1和3(两个3)的对角矩阵,或者包含一个2x2的3阶若尔当块。但在此例中,我们假设没有非对角元素,即J为:
      J = ( 1 0 0 0 3 0 0 0 3 ) J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} J= 100030003
  2. 求解过渡矩阵P

    • 设P的列向量为 X 1 , X 2 , X 3 ,即 P = ( X 1 , X 2 , X 3 ) X_1, X_2, X_3,即P=(X_1, X_2, X_3) X1,X2,X3,即P=(X1,X2,X3)
    • 根据 P − 1 A P = J P^{-1}AP=J P1AP=J,我们有AP=PJ。将P和J代入,得到 A ( X 1 , X 2 , X 3 ) = ( X 1 , X 2 , X 3 ) J A(X_1, X_2, X_3)=(X_1, X_2, X_3)J A(X1,X2,X3)=(X1,X2,X3)J
    • 这等价于 A X 1 = X 1 , A X 2 = 3 X 2 , A X 3 = 3 X 3 AX_1=X_1, AX_2=3X2, AX_3=3X_3 AX1=X1,AX2=3X2,AX3=3X3(但注意这里由于J的具体形式未知,我们实际上可能需要求解 A X 3 = X 2 + 3 X 3 AX_3=X_2+3X_3 AX3=X2+3X3等形式的方程,但在此假设下简化处理)。
    • 求解 ( A − λ E ) X = 0 (A-λE)X=0 (AλE)X=0的方程组,其中λ为特征值。对于λ=1,解得X1;对于λ=3,可能需要进一步处理以找到 X 2 X_2 X2 X 3 X_3 X3(注意 X 2 X_2 X2 X 3 X_3 X3可能不是
      ( A − 3 E ) X = 0 (A-3E)X=0 (A3E)X=0的解,而是需要满足特定关系的解)。
    • 在实际计算中,可能需要通过增广矩阵、行变换等方法求解这些方程组。

注意:上述例题中的J和P的具体求解过程在此处进行了简化,因为完整的求解过程涉及具体的矩阵A和复杂的线性方程组求解。在实际问题中,需要根据给定的矩阵A和特征值、特征向量等信息,通过求解相应的线性方程组来找到过渡矩阵P。

此外,过渡矩阵的求法不仅限于线性代数中的基变换,还广泛应用于马尔可夫链等领域,用于描述状态之间的转移概率。在这些应用中,过渡矩阵的求法可能更加复杂,需要根据具体问题的背景和数据来确定。

  • 如果 x 1 , x 2 , . . . , x m 为线性空间 V 中的 m (有限正整数)个向量, x ∈ V , 存在数域 K 中一组数 c 1 , c 2 , . . . , c n 使得 x = c 1 x 1 + c 2 x 2 + . . . + c m x m 称 x 为向量组 x 1 , x 2 , . . . , x m 的线性组合,向量 x 可由 x 1 , x 2 , . . . , x m 线性表示。 如果x_1,x_2,...,x_m为线性空间V中的m(有限正整数)个向量,x \in V,\\存在数域K中一组数c_1,c_2,...,c_n \\使得x=c_1x_1+c_2x_2+...+c_mx_m \\称x为向量组x_1,x_2,...,x_m的线性组合,向量x可由x_1,x_2,...,x_m线性表示。 如果x1,x2,...,xm为线性空间V中的m(有限正整数)个向量,xV存在数域K中一组数c1,c2,...,cn使得x=c1x1+c2x2+...+cmxmx为向量组x1,x2,...,xm的线性组合,向量x可由x1,x2,...,xm线性表示。
    1 、 c 1 , c 2 , . . . , c m 不全为零,且使 c 1 x 1 + c 2 x 2 + . . . + c m x m = 0 , 称向量组 x 1 , x 2 , . . . , x m 线性相关。 2 、否则称之为线性无关,即: c 1 , c 2 , . . . , c m 全为零时, c 1 x 1 + c 2 x 2 + . . . + c m x m = 0 1、c_1,c_2,...,c_m不全为零,且使c_1x_1+c_2x_2+...+c_mx_m=0,称向量组x_1,x_2,...,x_m线性相关。 \\2、否则称之为线性无关,即:c_1,c_2,...,c_m全为零时,c_1x_1+c_2x_2+...+c_mx_m=0 1c1,c2,...,cm不全为零,且使c1x1+c2x2+...+cmxm=0,称向量组x1,x2,...,xm线性相关。2、否则称之为线性无关,即:c1,c2,...,cm全为零时,c1x1+c2x2+...+cmxm=0
    注意,只涉及加法和数乘运算,与向量本身的属性无直接关系。 注意,只涉及加法和数乘运算,与向量本身的属性无直接 关系 。 注意,只涉及加法和数乘运算,与向量本身的属性无直接关系。

参考文献

1.文心一言
2.《矩阵论》第三版

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值