实变函数精解【12】

点集

基础与难点

  • 试证明 f : R n → R 为连续函数的充要条件是:对于任意的 E ⊂ R n , 均有 f ( E ˉ ) ⊂ f ( E ) ‾ 试证明f:R^n\rightarrow R为连续函数的充要条件是:对于任意的E\subset R^n,均有f(\bar E)\subset \overline{f(E)} 试证明f:RnR为连续函数的充要条件是:对于任意的ERn,均有f(Eˉ)f(E)
    1. 充分性: ( 1 ) f ( E ˉ ) = f ( E ) ∪ f ( E ′ ) ( 2 ) 任意的 E ⊂ R n , f ∈ C ( E ) E ′ ⊂ E , f ( E ˉ ) = f ( E ) ⊂ f ( E ) ‾ 2. 必要性 ( 1 )任意的 E ⊂ R n , f ( E ) ∪ f ( E ′ ) ⊂ f ( E ) ∪ ( f ( E ) ) ′ 任意的 E ⊂ R n , f ( E ′ ) ⊂ ( f ( E ) ) ′ ( 2 ) x 0 ∈ E ′ , x k ∈ E , E 中与 x 0 互异的 { x k } 点列 x k → x 0 , k → ∞ y 0 = f ( x 0 ) ∈ f ( E ′ ) y 0 ∈ ( f ( E ) ) ′ f ( E ) 中点列 { y k = f ( x k ) } lim ⁡ k → ∞ ∣ y k − y 0 ∣ = 0 ( 3 ) E ∩ ( B ( x 0 , δ ) \ { x 0 } ) ≠ ∅ x ∈ E ∩ B ( x 0 , δ ) 时 , ∣ f ( x ) − f ( x 0 ) ∣ < ϵ f 在 x 0 处连续, f 在 E ′ 中连续。 任意的 E ⊂ R n , f ( E ′ ) ⊂ ( f ( E ) ) ′ , E ′ ⊂ R n ,即: f 在 R n 中连续。 1.充分性: \\(1)f(\bar E)=f(E)\cup f(E') \\(2)任意的E\subset R^n,f \in C(E) \\E'\subset E,f(\bar E)=f(E)\subset\overline{f(E)} \\2.必要性 \\(1)任意的E\subset R^n,f(E)\cup f(E')\subset f(E) \cup (f(E))' \\任意的E\subset R^n,f(E')\subset (f(E))' \\(2)x_0 \in E',x_k \in E,E中与x_0互异的\{x_k\}点列 \\x_k\rightarrow x_0,k\rightarrow \infty \\y_0=f(x_0) \in f(E') \\y_0 \in (f(E))' \\f(E)中点列\{y_k=f(x_k)\} \\\lim_{k\rightarrow \infty}|y_k-y_0|=0 \\(3)E\cap (B(x_0,\delta)\backslash \{x_0\}) \ne \emptyset \\ x \in E\cap B(x_0,\delta) 时, \\|f(x)-f(x_0)| <\epsilon \\f在x_0处连续,f在E'中连续。 \\任意的E\subset R^n,f(E')\subset (f(E))',E' \subset R^n,即:f在R^n中连续。 1.充分性:(1)f(Eˉ)=f(E)f(E)(2)任意的ERn,fC(E)EE,f(Eˉ)=f(E)f(E)2.必要性1)任意的ERn,f(E)f(E)f(E)(f(E))任意的ERn,f(E)(f(E))2x0E,xkE,E中与x0互异的{xk}点列xkx0,ky0=f(x0)f(E)y0(f(E))f(E)中点列{yk=f(xk)}klimyky0=0(3)E(B(x0,δ)\{x0})=xEB(x0,δ),f(x)f(x0)<ϵfx0处连续,fE中连续。任意的ERnf(E)(f(E))ERn,即:fRn中连续。
  • 设定义在 R 2 上的二元函数 f ( x , y ) 满足: 设定义在R^2上的二元函数f(x,y)满足: 设定义在R2上的二元函数f(x,y)满足:
    1. 任意固定 y 0 ∈ R , f ( x , y 0 ) 是 R 上的连续函数。 2. 任意固定 x 0 ∈ R , f ( x 0 , y ) 是 R 上的连续函数。 3. 对 R 2 上的任一紧集 K , f ( K ) 是 R 上的紧集。 则 , f ∈ C ( R 2 ) 1.任意固定y_0 \in R,f(x,y_0)是R上的连续函数。 \\2.任意固定x_0\in R,f(x_0,y)是R上的连续函数。 \\3.对R^2上的任一紧集K,f(K)是R上的紧集。 \\则,f \in C(R^2) 1.任意固定y0Rf(x,y0)R上的连续函数。2.任意固定x0Rf(x0,y)R上的连续函数。3.R2上的任一紧集K,f(K)R上的紧集。,fCR2)
    1. E ⊂ R , ( x 0 , y 0 ) ∈ R 2 , x ∈ E ∩ B ( x 0 , δ ) ∣ f ( x , y 0 ) − f ( x 0 , y 0 ) ∣ < ϵ ( x , y 0 ) 在 x 方向趋向 ( x 0 , y 0 ) 。 2. E ⊂ R , ( x 0 , y 0 ) ∈ R 2 , y ∈ E ∩ B ( y 0 , δ ) ∣ f ( x 0 , y ) − f ( x 0 , y 0 ) ∣ < ϵ ( x 0 , y ) 在 y 方向趋向 ( x 0 , y 0 ) 。 3. E 1 ⊂ R 2 , E 1 = E ∩ B ( ( x 0 , y 0 ) , δ ) ( 1 )任意固定 y 0 ∈ R , 任意固定 x 0 ∈ R ,将使 ( x , y 0 ) 、 ( x 0 , y ) 完全充满 ( x 0 , y 0 ) 的 δ 邻域,也会完全充满 E 1 中。 ( 2 )对 R 2 上的任一 ( x , y ) ∈ E 1 , K , f ( K ) 是 R 上的紧集, f 是连续映射 E 1 、 f ( E 1 ) 都是有界闭集,也是紧集,其任何一个开覆盖均包含有限个覆盖。 因此, ( x , y ) ∈ E 1 , ∣ f ( x , y ) − f ( x 0 , y 0 ) ∣ < ϵ f ( x , y ) 在 ( x 0 , y 0 ) 连续,因为 x 0 和 y 0 都可任意固定,只要满足条件属于 R 即可 所以 f ∈ C ( R 2 ) 1.E \subset R,(x_0,y_0)\in R^2,x \in E\cap B(x_0,\delta) \\|f(x,y_0)-f(x_0,y_0)|<\epsilon \\(x,y_0)在x方向趋向(x_0,y_0)。 \\2.E \subset R,(x_0,y_0)\in R^2,y \in E\cap B(y_0,\delta) \\|f(x_0,y)-f(x_0,y_0)|<\epsilon \\(x_0,y)在y方向趋向(x_0,y_0)。 \\3.E_1 \subset R^2,E_1=E\cap B((x_0,y_0),\delta) \\(1)任意固定y_0 \in R,任意固定x_0\in R,将使(x,y_0)、(x_0,y) \\完全充满(x_0,y_0)的\delta邻域,也会完全充满E_1中。 \\(2)对R^2上的任一(x,y)\in E_1,K,f(K)是R上的紧集,f是连续映射 \\E_1、f(E_1)都是有界闭集,也是紧集,其任何一个开覆盖均包含有限个覆盖。 \\因此,(x,y) \in E_1,|f(x,y)-f(x_0,y_0)|<\epsilon \\f(x,y)在(x_0,y_0)连续,因为x_0和y_0都可任意固定,只要满足条件属于R即可 \\所以f \in C(R^2) 1.ER,(x0,y0)R2,xEB(x0,δ)f(x,y0)f(x0,y0)<ϵ(x,y0)x方向趋向(x0,y0)2.ER,(x0,y0)R2,yEB(y0,δ)f(x0,y)f(x0,y0)<ϵ(x0,y)y方向趋向(x0,y0)3.E1R2,E1=EB((x0,y0),δ)1)任意固定y0R,任意固定x0R,将使(x,y0)(x0,y)完全充满(x0,y0)δ邻域,也会完全充满E1中。2)对R2上的任一(x,y)E1K,f(K)R上的紧集,f是连续映射E1f(E1)都是有界闭集,也是紧集,其任何一个开覆盖均包含有限个覆盖。因此,(x,y)E1f(x,y)f(x0,y0)<ϵf(x,y)(x0,y0)连续,因为x0y0都可任意固定,只要满足条件属于R即可所以fCR2)
  • 设 A ⊂ R n , 1. 若 A = A ∘ , A 是开集。 2. A = A ˉ , A 是闭集。 无孤立点的闭集为完备集。 有界闭集为紧集。 3. A ˉ = R n , A 为稠集, B ⊂ A ˉ , A 在 B 中稠密。 ( A ˉ ) ∘ = ∅ , 则 A 为疏集。 设A\subset R^n, \\1.若A=A^\circ,A是开集。 \\2.A=\bar A,A是闭集。 \\无孤立点的闭集为完备集。 \\有界闭集为紧集。 \\3.\bar A=R^n,A为稠集, \\B \subset \bar A,A在B中稠密。 \\(\bar A)^\circ=\emptyset,则A为疏集。 ARn,1.A=A,A是开集。2.A=Aˉ,A是闭集。无孤立点的闭集为完备集。有界闭集为紧集。3.Aˉ=Rn,A为稠集,BAˉ,AB中稠密。(Aˉ)=,A为疏集。

下面内容来自文心一言和chatgpt

邻域

是数学中的一个重要概念,尤其在拓扑学中扮演着基础性的角色。以下是关于邻域的详细解释:

一、定义与基本概念

  • 定义:邻域是指集合上的一种基础的拓扑结构。在一般拓扑学中,设X为拓扑空间,X中一点x的邻域为X的一个子集N,使得存在一个X的开集U,满足U是N的子集。简单来说,邻域是一个特殊的区间,以某点为中心,包含该点周围的一些点。
  • 表示方法:以点a为中心的任何开区间称为点a的邻域,记作U(a)。点a的δ邻域是指开区间(a-δ,a+δ),其中δ是一个正数,点a称为这个邻域的中心,δ称为这个邻域的半径。这表示与点a的距离小于δ的一切点x的全体。

二、邻域的类型

  • 开邻域:若x的邻域同时是X中的开集,则称其为x的开邻域。
  • 闭邻域:若x的邻域同时是X中的闭集,则称其为x的闭邻域。
  • 去心邻域:有时需要用到的邻域需要把邻域中心去掉,即点a的δ邻域去掉中心a后,称为点a的去心δ邻域。此外,还有左δ邻域和右δ邻域等概念。

三、邻域公理

  • 概述:邻域公理是现代数学拓扑结构的基础概念,是定义拓扑的五套等价公理之一。这套公理直接定义了空间上的整套邻域系,而非简单定义某个点的邻域。
  • 内容:主要包括四个部分(U1-U4),具体如下:
    1. U1:若A是x的邻域,则x属于A。
    2. U2:若A和B都是x的邻域,则A和B的交集也是x的邻域。即邻域对于有限交运算封闭。
    3. U3:若A是x的邻域,则所有包含A的集合都是x的邻域。
    4. U4:若A是x的邻域,则存在一个被A包含的集合B(可以相等),使得B是其中所有点的邻域。换言之,若x有一个邻域,那么一定可以将其缩小,缩小到它是其中所有点的邻域。

四、应用与拓展

  • 应用领域:邻域的概念在多个学科和领域中都有应用,如数学中的拓扑学、微分学,以及图像处理、地理学等领域。
  • 拓展概念:在图像处理中,像素的邻域是一个重要概念,用于分析像素间的关系。例如,4邻域和8邻域是常用的像素邻域类型。

综上所述,邻域是数学中的一个基础且重要的概念,它在拓扑学等多个学科中都有广泛的应用。通过深入理解邻域的定义、类型、公理以及应用,可以更好地把握这一概念的内涵和外延。

实变函数中极限点、边界点与函数连续之间的区别与联系

在实变函数中,极限点、边界点与函数连续性的概念各自独立但又相互关联。

一、定义与区别

1. 极限点
  • 定义:在实变函数中,极限点通常指的是函数在某点或某序列的极限行为所涉及的点。
    在数学中,极限点通常与数列或函数在某点的行为相关。
    对于数列来说,极限点是数列中某个子列收敛到的点。
    对于函数来说,极限点则是指当自变量趋近于某个值时,函数值趋近于某个确定的数。这个数就被称为函数在该点的极限值,具体来说,如果函数在某个点a的附近,其函数值随着自变量趋近于a而趋近于某个确定的数L,则称a为函数在该极限过程中的极限点,L为函数在a点的极限值。
  • 特点:极限点的存在性依赖于函数值在某点附近的极限行为,与函数在该点是否有定义无直接关系。
2. 边界点
  • 定义:边界点是拓扑空间中的一个概念,它指的是那些同时属于某个集合及其补集的点的集合的边界上的点。在实变函数中,边界点更多地与函数的定义域或值域的边界相关。
  • 特点:边界点描述了集合(如函数的定义域或值域)的空间位置关系,而不直接涉及函数值的极限行为。
3. 函数连续性
  • 定义:函数在某点连续是指当自变量趋近于该点时,函数值也趋近于该点的函数值,并且该点必须在函数的定义域内。
  • 特点:连续性要求函数在某点既有定义,又满足极限值等于函数值的条件。

二、联系

1. 极限点与函数连续性的联系
  • 直接联系:如果函数在某点连续,那么根据连续性的定义,该点必然是函数的极限点,因为连续要求函数在该点的极限存在且等于函数值。
  • 反向关系:反之,一个点是函数的极限点,并不意味着函数在该点一定连续。因为极限点的定义只要求函数值在该点附近趋近于某个数,而不要求这个数就是函数在该点的值,也不要求函数在该点有定义。
2. 边界点与函数连续性的联系
  • 间接联系:边界点与函数连续性的直接联系不强,因为它们分别属于不同的数学范畴。然而,在某些情况下,边界点可能影响函数的连续性。
  • 具体情况
    • 如果函数的定义域或值域包含边界点,并且函数在这些点上没有定义或定义不连续,那么这些边界点就会成为函数不连续的点。
    • 如果函数的定义域或值域是开集(不包含边界点),则边界点与函数的连续性无关。

三、总结

在实变函数中,极限点、边界点与函数的连续性是重要的概念。它们各自有不同的定义,但在某些情况下它们之间有紧密的联系。以下是对这些概念的定义以及它们之间的区别与联系的解释。

1. 极限点 (Limit Point)
  • 定义: 如果对于一个集合 A ⊂ R A \subset \mathbb{R} AR,点 x 0 x_0 x0 满足对任意 ϵ > 0 \epsilon > 0 ϵ>0,在 ( x 0 − ϵ , x 0 + ϵ ) (x_0 - \epsilon, x_0 + \epsilon) (x0ϵ,x0+ϵ) 区间内的 x 0 x_0 x0 的任意邻域内,总是存在至少一个不同于 x 0 x_0 x0的点 x ∈ A x \in A xA,那么 x 0 x_0 x0 就是 A A A 的极限点。
  • 意义: 极限点是一个集合内那些无法被“孤立”出来的点,换句话说,极限点处的函数值可以用周围的函数值来近似。
2. 边界点 (Boundary Point)
  • 定义: 对于一个集合 A ⊂ R A \subset \mathbb{R} AR,如果点 x 0 x_0 x0满足对于任意 ϵ > 0 \epsilon > 0 ϵ>0,在 ( x 0 − ϵ , x 0 + ϵ ) (x_0 - \epsilon, x_0 + \epsilon) (x0ϵ,x0+ϵ)区间内的任意邻域内,既存在属于 A A A 的点,也存在不属于 A A A 的点,那么 x 0 x_0 x0就是 A A A的边界点。
  • 意义: 边界点是集合 A A A与其补集 A c A^c Ac的“交界”处,属于集合 A A A或者其补集 A c A^c Ac都可以。
3. 函数的连续性 (Continuity)
  • 定义: 函数 f : R n → R f: \mathbb{R^n} \to \mathbb{R} f:RnR 在点 x 0 x_0 x0处连续,当且仅当对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在 δ > 0 \delta > 0 δ>0使得对于所有满足 ∣ x − x 0 ∣ < δ |x - x_0| < \delta xx0<δ x x x,都有 ∣ f ( x ) − f ( x 0 ) ∣ < ϵ |f(x) - f(x_0)| < \epsilon f(x)f(x0)<ϵ
  • 意义: 连续性保证了函数在一个点附近的值变化不会“突然跳跃”,即函数值随自变量的变化而平滑地变化。
4. 区别与联系
  1. 极限点与连续性:

    • 如果一个点是函数的极限点,那么函数在该点的值可以通过其邻域内的函数值来定义或逼近。
    • 函数在极限点处连续意味着函数值在这个点不会出现突变;即邻域内的函数值与该点处的函数值很接近。
    • 但是,极限点处的函数未必连续,特别是在该点函数可能未定义或者不满足连续性的条件。
  2. 边界点与连续性:

    • 在边界点处,函数值可以出现显著变化,因为在边界点处可能存在来自不同集合(集合 A A A) 和集合 A c A^c Ac)的影响。
    • 函数在边界点处不一定连续,因为边界点可能属于集合 A A A,也可能不属于集合 A A A。如果边界点处的函数值与邻域内的函数值有不一致的行为,则函数在该点不连续。
  3. 极限点与边界点:

    • 一个集合的边界点可能是极限点,但极限点不一定是边界点。
    • 边界点关注的是集合与其外部的关系,而极限点关注的是集合内部的结构。

总结

  • 极限点 与函数在该点处的行为紧密相关,是函数连续性的一个考察点。
  • 边界点 是集合结构的重要特征,在研究函数在边界点的连续性时需要特别小心。
  • 函数的连续性 是描述函数平滑性的重要属性,在极限点和边界点处的连续性需要结合具体的函数定义和集合特性来分析。
  • 极限点函数连续性有直接的关联,连续的点必然是极限点,但极限点不一定连续。
  • 边界点函数连续性的关联较弱,它们之间的关系取决于函数的定义域、值域以及边界点的具体情况。

参考文献

1、文心一言
2、《实变函数》
3、《实变函数论》
4、 chatgpt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值