凸分析与凸优化精解【3】

这里写目录标题

  • 基础
    • 仿射集
      • R n 上 仿 射 集 R^n上仿射集 Rn仿
        • 基础
        • 欧氏空间中直线方程
          • 1. **二维空间中的直线方程**:
          • 2. **三维空间中的直线方程**:
          • 3. **向量方程**:
          • 4. 在n维欧氏空间中直线的方程
          • 5.注意事项
          • 6.在n维欧氏空间中,经过两点 P 1 = ( x 1 , y 1 , z 1 , … , w 1 ) P_1 = (x_1, y_1, z_1, \ldots, w_1) P1=(x1,y1,z1,,w1) P 2 = ( x 2 , y 2 , z 2 , … , w 2 ) P_2 = (x_2, y_2, z_2, \ldots, w_2) P2=(x2,y2,z2,,w2) 的直线点集
            • 参数方程
            • 向量方程
  • 参考文献

基础

仿射集

R n 上 仿 射 集 R^n上仿射集 Rn仿

基础
  • 如 果 x 和 y 为 R n 上 不 同 的 点 ( 实 质 就 是 向 量 ) , 形 如 : ( 1 − λ ) x + λ y = x + λ ( y − x ) , λ ∈ R 的 点 集 称 为 连 接 x 和 y 的 直 线 。 如果x和y为R^n上不同的点(实质就是向量),形如: \\(1-\lambda)x+\lambda y=x+\lambda(y-x),\lambda \in R \\的点集称为连接x和y的直线。 xyRn)(1λ)x+λy=x+λ(yx),λRxy线
  • 对 于 R n 中 的 子 集 M , 如 果 对 于 任 意 x , y ∈ M , λ ∈ R 都 有 ( 1 − λ ) x + λ y ∈ M . M 为 R n 中 的 仿 射 集 。 M 由 孤 立 点 组 成 也 称 为 仿 射 集 。 对于R^n中的子集M,如果对于任意x,y \in M,\lambda \in R都有(1-\lambda)x+\lambda y \in M. \\M为R^n中的仿射集。 \\M由孤立点组成也称为仿射集。 RnM,x,yMλR(1λ)x+λyM.MRn仿M仿

非空仿射集的几何图形可以是非常多样的,取决于仿射集在特定维度空间中的具体形状和维度。以下是一些常见的非空仿射集的几何图形示例:

  1. 单点集:最简单的非空仿射集就是一个单点,它没有维度,只是一个孤立的点。

  2. 直线:在二维或更高维空间中,一条直线是一个非空仿射集。它是一维的,由无限多个点组成,这些点都满足直线方程。

  3. 平面:在三维或更高维空间中,一个平面是一个二维的非空仿射集。它由无限多个点组成,这些点都满足平面方程。在三维空间中,平面看起来是一个平坦的、无限延伸的二维表面。

  4. 超平面:在更高维空间中(超过三维),类似于三维空间中的平面,超平面是一个更高维度的仿射集。例如,在四维空间中,一个超平面是一个三维的仿射集。

  5. 仿射子空间:更一般地,非空仿射集可以是任意维度的仿射子空间。这些子空间可以是直线、平面、超平面的推广,也可以是更低维度的(如单点集)或更高维度的(如整个空间的一个真子集,但不是整个空间本身)。

  6. 不规则形状:在某些情况下,非空仿射集可能由多个不共线的点生成,形成一个不规则的几何形状。然而,这种形状仍然保持仿射集的性质,即任意两点之间的直线段都完全位于集合中。但请注意,这种不规则形状通常不是通过简单的几何方程来描述的,而是由构成它的点的集合来定义的。

  7. 平行线或平行平面:虽然单个平行线或平行平面本身不是仿射集(因为它们不满足任意两点之间直线段都在集合中的条件),但由多条平行线或平行平面组成的集合(如果它们共享一个公共点或公共直线作为“起点”)在某些情况下可以被视为一个非空仿射集。但这种情况比较特殊,且通常不是仿射集的标准示例。

需要注意的是,上述示例中的“直线”、“平面”和“超平面”等术语是在特定维度空间中使用的。在更高维度的空间中,这些概念会相应地推广为更高维度的仿射集。

最后,要强调的是,非空仿射集的几何图形并不是固定不变的,而是取决于仿射集在特定维度空间中的具体定义和性质。

  • 含 有 两 个 点 的 仿 射 集 必 须 包 含 通 过 这 两 个 点 的 整 个 直 线 。 含有两个点的仿射集必须包含通过这两个点的整个直线。 仿线

非空仿射集的几何特征主要体现在以下几个方面:

  1. 直线性:非空仿射集中的任意两点之间的直线段都完全位于该集合中。这是仿射集定义的核心,也是其最基本的几何特征。换句话说,如果我们在仿射集中选择任意两个不同的点,并沿着连接这两点的直线移动,那么我们的路径将始终保持在仿射集内部。

  2. 平移不变性:仿射集在平移变换下是封闭的。即,如果我们选择一个仿射集中的点作为基准点,并将集合中的每个点都沿着某个固定方向移动相同的距离,那么得到的新集合仍然是仿射集。这个性质源于仿射集定义的线性组合特性,其中加法运算允许我们进行平移。

  3. 维度多样性:非空仿射集的维度可以是任意的,从0维(单点集)到 n n n维(整个 n n n维欧氏空间)不等。特别地,当仿射集只包含一个点时,它是0维的;当仿射集是一条直线时,它是1维的;当仿射集是一个平面时,它是2维的;以此类推。然而,需要注意的是,尽管平面在三维空间中看起来是二维的,但从仿射集的角度来看,它仍然是一个更高维空间(如四维或更高维空间)中的仿射集的一个特例,只是在这个特定的上下文中被限制在了三维子空间中。

  4. 不包含“弯曲”:与曲面不同,仿射集不包含任何形式的“弯曲”。在仿射集中,任意两点之间的最短路径始终是一条直线段。这意味着仿射集在几何上是非常“直”的,没有曲率或弯曲的部分。

  5. 可能包含多个不共线的点:尽管仿射集具有直线性和平移不变性,但它并不要求所有点都共线。实际上,仿射集可以包含任意数量的不共线的点,只要这些点满足仿射集的定义即可。这些点将共同确定一个具有特定维度和形状的仿射集。

综上所述,非空仿射集的几何特征主要包括直线性、平移不变性、维度多样性、不包含“弯曲”以及可能包含多个不共线的点。这些特征共同描述了仿射集在几何上的独特性和多样性。

  • R n 中 含 有 原 点 的 子 空 间 的 都 为 仿 射 集 。 R^n中含有原点的子空间的都为仿射集。 Rn仿

仿射集和子空间是线性代数中两个重要的概念,它们之间有着密切的关系,但也有一些关键的区别。 首先,我们来定义这两个概念:

  1. 仿射集(Affine Set):在 n n n维欧氏空间 V V V中,一个集合 C C C被称为仿射集,如果对于集合 C C C中的任意两点 x 1 x_1 x1 x 2 x_2 x2,以及任意实数 θ \theta θ(注意这里 θ \theta θ是任意的实数,不仅仅是0或1),点 ( 1 − θ ) x 1 + θ x 2 (1-\theta)x_1 + \theta x_2 (1θ)x1+θx2都属于集合 C C C。换句话说,仿射集中的任意两点之间的直线段都完全位于该集合中。
  2. 子空间(Subspace):在 n n n维欧氏空间 V V V中,一个非空子集 W W W被称为子空间,如果它满足加法封闭性和数乘封闭性。即,对于任意 α , β ∈ W \alpha, \beta \in W α,βW和任意实数 k k k,都有 α + β ∈ W \alpha + \beta \in W α+βW k α ∈ W k\alpha \in W kαW
    接下来,我们探讨它们之间的关系:
  • 子空间是仿射集的特例:每一个子空间都是仿射集,因为子空间满足仿射集的定义(任意两点之间的直线段都在集合中)。但更重要的是,子空间还满足额外的条件,即数乘封闭性(任意元素与任意实数的乘积仍在集合中)。
  • 仿射集不一定是子空间:仿射集只要求任意两点之间的直线段在集合中,但不要求数乘封闭性。因此,存在仿射集不是子空间的情况。例如,在二维欧氏空间中,过原点但不包含原点的任意直线就是一个仿射集,但它不是子空间,因为它不满足数乘封闭性(例如,如果直线上的某个点乘以0,结果应该是原点,但原点不在该直线上)。
  • 仿射集与子空间的交集:如果一个仿射集同时满足数乘封闭性,那么它就是一个子空间。因此,我们可以说子空间是仿射集的一个特殊子集,即那些同时满足数乘封闭性的仿射集。 综上所述,仿射集和子空间之间的关系是:子空间是仿射集的特殊情况,即满足额外数乘封闭性条件的仿射集。
  • 仿 射 集 和 子 空 间 之 间 存 在 精 确 对 应 关 系 仿射集和子空间之间存在精确对应关系 仿

n n n维欧氏空间 V V V中,子空间是一个非空子集 W W W,它满足以下两个条件:

  1. 加法封闭性:对于任意两个元素 α , β ∈ W \alpha, \beta \in W α,βW,它们的和 α + β \alpha + \beta α+β也属于 W W W
  2. 数乘封闭性:对于任意元素 α ∈ W \alpha \in W αW和任意实数 k k k,数乘 k α k\alpha kα也属于 W W W。 根据这两个条件,我们可以进一步探讨 n n n维欧氏空间的子空间。
    首先, V V V本身和只包含零向量的集合 { 0 } \{0\} {0}都是 V V V的子空间,这是显然的,因为两者都满足上述两个条件。
    其次,对于 V V V中的任意一组向量 α 1 , α 2 , … , α s \alpha_1, \alpha_2, \ldots, \alpha_s α1,α2,,αs(其中 s ≤ n s \leq n sn),我们可以考虑由这些向量生成的子空间,记作 L ( α 1 , α 2 , … , α s ) L(\alpha_1, \alpha_2, \ldots, \alpha_s) L(α1,α2,,αs)。这个子空间包含所有可以由 α 1 , α 2 , … , α s \alpha_1, \alpha_2, \ldots, \alpha_s α1,α2,,αs通过线性组合得到的向量,即 L ( α 1 , α 2 , … , α s ) = { k 1 α 1 + k 2 α 2 + ⋯ + k s α s ∣ k 1 , k 2 , … , k s ∈ R } L(\alpha_1, \alpha_2, \ldots, \alpha_s) = \{k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s | k_1, k_2, \ldots, k_s \in \mathbb{R}\} L(α1,α2,,αs)={k1α1+k2α2++ksαsk1,k2,,ksR} 这个集合显然满足加法封闭性和数乘封闭性,因此是 V V V的一个子空间。 特别地,当 s = 1 s = 1 s=1时,即只有一个非零向量 α \alpha α,那么由 α \alpha α生成的子空间就是所有 α \alpha α的标量倍数的集合,即
    L ( α ) = { k α ∣ k ∈ R } L(\alpha) = \{k\alpha | k \in \mathbb{R}\} L(α)={kαkR}
    这是一个一维子空间,也称为过原点和向量 α \alpha α的直线。 当 s = 2 s = 2 s=2 α 1 \alpha_1 α1 α 2 \alpha_2 α2不共线时, L ( α 1 , α 2 ) L(\alpha_1, \alpha_2) L(α1,α2)是一个二维子空间,也称为过原点和包含向量 α 1 \alpha_1 α1 α 2 \alpha_2 α2的平面。 类似地,当 s = n s = n s=n α 1 , α 2 , … , α n \alpha_1, \alpha_2, \ldots, \alpha_n α1,α2,,αn线性无关时, L ( α 1 , α 2 , … , α n ) L(\alpha_1, \alpha_2, \ldots, \alpha_n) L(α1,α2,,αn)就是整个 n n n维欧氏空间 V V V本身。
    综上所述, n n n维欧氏空间的子空间可以是 V V V本身、只包含零向量的集合,或者由 V V V中一组向量通过线性组合生成的集合。这些子空间的维度可以从0(只包含零向量的集合)到 n n n(整个空间)不等。
  • 每 个 非 空 仿 射 集 M 一 定 平 行 于 唯 一 的 子 空 间 L , 这 个 L 由 L = M − M = { x − y ∣ x ∈ M , y ∈ M } 每个非空仿射集M一定平行于唯一的子空间L,这个L由 \\L=M-M=\{x-y|x \in M,y \in M\} 仿ML,LL=MM={xyxM,yM}

非空仿射集 M M M是否是曲面
这个问题并不是一个简单的“是”或“否”的答案,因为它取决于我们如何定义“曲面”以及仿射集 M M M的具体性质。
首先,我们需要明确仿射集的定义:在 n n n维欧氏空间 V V V中,一个集合 M M M被称为仿射集,如果对于集合 M M M中的任意两点 x 1 x_1 x1 x 2 x_2 x2,以及任意实数 θ \theta θ θ \theta θ是任意的实数),点 ( 1 − θ ) x 1 + θ x 2 (1-\theta)x_1 + \theta x_2 (1θ)x1+θx2都属于集合 M M M。换句话说,仿射集中的任意两点之间的直线段都完全位于该集合中。 接下来,我们考虑“曲面”的定义。在数学中,“曲面”这个词可以有多种定义,但通常指的是一个二维的、嵌入在更高维空间(如三维空间)中的连续体。曲面可以是平面的、弯曲的,或者具有更复杂的形状,但它必须是二维的。
现在,我们来看非空仿射集 M M M

  1. 如果 M M M只包含一个点(即单点集),那么它显然不是曲面,因为它没有维度。
  2. 如果 M M M是一条直线(在二维或更高维空间中),那么它也不是通常意义上的曲面,因为它是一维的。然而,在某些上下文中,直线可能被视为一种特殊的“曲面”(特别是当我们在讨论几何或拓扑结构时)。但在这里,我们按照更严格的定义来考虑。
  3. 如果 M M M是一个平面(在三维或更高维空间中),那么它也不是我们通常所说的“曲面”,因为平面是二维的且没有曲率。但同样地,在某些上下文中,平面可能被视为一种特殊的曲面。
  4. 如果 M M M是一个更高维的仿射子空间(例如,在三维空间中的一个二维平面,或者在更高维空间中的一个三维或更高维的“超平面”),那么它同样不是我们通常所说的曲面,因为它具有比二维更高的维度。
  5. 如果 M M M是一个更复杂的仿射集,比如一个由多个不共线的点生成的仿射集(在三维空间中可能表现为一个不规则的、非平面的形状),那么它可能看起来像一个曲面,但从严格的数学定义来看,它仍然不是曲面,因为它不满足曲面的二维性要求。
    综上所述,非空仿射集 M M M通常不被视为曲面,除非在特定的上下文或定义下。在大多数情况下,曲面被理解为二维的、具有某种曲率的连续体,而仿射集则更广泛地涵盖了从单点集到高维子空间的各种集合。
欧氏空间中直线方程

在欧氏空间中,直线方程可以通过多种方式表示,主要取决于空间的维度以及给定的条件。以下是一些常见的直线方程表示方法:

1. 二维空间中的直线方程
  • 点斜式:若直线过点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 且斜率为 m m m,则直线方程为 y − y 0 = m ( x − x 0 ) y - y_0 = m(x - x_0) yy0=m(xx0)
  • 两点式:若直线过点 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2),则直线方程为 y − y 1 y 2 − y 1 = x − x 1 x 2 − x 1 \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} y2y1yy1=x2x1xx1
  • 一般式:直线方程可以表示为 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0,其中 A , B , C A, B, C A,B,C 是常数,且 A A A B B B 不全为零。
2. 三维空间中的直线方程
  • 参数方程:若直线过点 ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0) 且方向向量为 ( a , b , c ) (\mathbf{a}, \mathbf{b}, \mathbf{c}) (a,b,c),则直线方程为
    { x = x 0 + a t y = y 0 + b t z = z 0 + c t \begin{cases} x = x_0 + \mathbf{a}t \\ y = y_0 + \mathbf{b}t \\ z = z_0 + \mathbf{c}t \end{cases} x=x0+aty=y0+btz=z0+ct
    其中 t t t 是参数。
  • 一般方程:两个平面的交线是一个直线,因此可以通过联立两个平面的方程来求解直线的方程。例如,联立方程
    { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
    可以得到一条直线的方程,其中 A 1 , B 1 , C 1 , D 1 , A 2 , B 2 , C 2 , D 2 A_1, B_1, C_1, D_1, A_2, B_2, C_2, D_2 A1,B1,C1,D1,A2,B2,C2,D2 是常数,且这两个平面不平行。
3. 向量方程

在三维空间中,直线也可以表示为向量方程的形式。若直线过点 r 0 = ( x 0 , y 0 , z 0 ) \mathbf{r}_0 = (x_0, y_0, z_0) r0=(x0,y0,z0) 且方向向量为 d = ( a , b , c ) \mathbf{d} = (\mathbf{a}, \mathbf{b}, \mathbf{c}) d=(a,b,c),则直线的向量方程为 r = r 0 + t d \mathbf{r} = \mathbf{r}_0 + t\mathbf{d} r=r0+td 其中 r \mathbf{r} r 是直线上的任意一点, t t t 是参数。

综上所述,欧氏空间中的直线方程可以通过多种不同的形式来表示,具体使用哪种形式取决于问题的具体条件和需求。

4. 在n维欧氏空间中直线的方程

通常通过参数方程或向量方程来表示,因为这些表示方式能够自然地扩展到任意维度。

  • 参数方程

假设直线过点 P 0 = ( x 0 , y 0 , z 0 , … , w n − 1 ) P_0 = (x_0, y_0, z_0, \ldots, w_{n-1}) P0=(x0,y0,z0,,wn1),并且有一个方向向量 d = ( a 1 , a 2 , a 3 , … , a n ) \mathbf{d} = (a_1, a_2, a_3, \ldots, a_n) d=(a1,a2,a3,,an)。那么,直线上的任意一点 P = ( x , y , z , … , w ) P = (x, y, z, \ldots, w) P=(x,y,z,,w) 可以通过以下参数方程来表示:

{ x = x 0 + a 1 t y = y 0 + a 2 t z = z 0 + a 3 t ⋮ w n − 1 = w 0 , n − 1 + a n t \begin{cases} x = x_0 + a_1t \\ y = y_0 + a_2t \\ z = z_0 + a_3t \\ \vdots \\ w_{n-1} = w_{0,n-1} + a_nt \end{cases} x=x0+a1ty=y0+a2tz=z0+a3twn1=w0,n1+ant

其中 t t t 是参数,可以取任意实数。这个参数方程描述了直线上所有点的坐标与参数 t t t 之间的关系。

  • 向量方程

向量方程是参数方程的一种更紧凑的表示方式。在n维空间中,直线的向量方程可以写为:

r = r 0 + t d \mathbf{r} = \mathbf{r}_0 + t\mathbf{d} r=r0+td

其中,

  • r = ( x , y , z , … , w ) \mathbf{r} = (x, y, z, \ldots, w) r=(x,y,z,,w) 是直线上任意一点的位置向量,
  • r 0 = ( x 0 , y 0 , z 0 , … , w 0 , n − 1 ) \mathbf{r}_0 = (x_0, y_0, z_0, \ldots, w_{0,n-1}) r0=(x0,y0,z0,,w0,n1) 是直线上一个已知点的位置向量,
  • d = ( a 1 , a 2 , a 3 , … , a n ) \mathbf{d} = (a_1, a_2, a_3, \ldots, a_n) d=(a1,a2,a3,,an) 是直线的方向向量,
  • t t t 是参数。

这个向量方程表示直线上所有点的位置向量都是起点在 r 0 \mathbf{r}_0 r0、方向为 d \mathbf{d} d
的向量的线性组合(即缩放)。

5.注意事项
  • 在n维空间中,直线的定义与二维或三维空间类似,都是通过一个点和一个方向来确定的。
  • 参数方程和向量方程是等价的,只是表示形式不同。
  • n = 2 n=2 n=2 n = 3 n=3 n=3 时,这些方程就退化为二维或三维空间中的直线方程。
  • 在实际应用中,选择哪种表示方式取决于问题的具体需求和方便性。
6.在n维欧氏空间中,经过两点 P 1 = ( x 1 , y 1 , z 1 , … , w 1 ) P_1 = (x_1, y_1, z_1, \ldots, w_1) P1=(x1,y1,z1,,w1) P 2 = ( x 2 , y 2 , z 2 , … , w 2 ) P_2 = (x_2, y_2, z_2, \ldots, w_2) P2=(x2,y2,z2,,w2) 的直线点集

可以通过多种方式表示,但最常见和直接的是使用参数方程或向量方程。

参数方程

参数方程能够明确地表示出直线上任意一点与参数 t t t 的关系。对于经过点 P 1 P_1 P1 P 2 P_2 P2 的直线,其参数方程为:

{ x = x 1 + ( x 2 − x 1 ) t y = y 1 + ( y 2 − y 1 ) t z = z 1 + ( z 2 − z 1 ) t ⋮ w = w 1 + ( w 2 − w 1 ) t \begin{cases} x = x_1 + (x_2 - x_1)t \\ y = y_1 + (y_2 - y_1)t \\ z = z_1 + (z_2 - z_1)t \\ \vdots \\ w = w_1 + (w_2 - w_1)t \end{cases} x=x1+(x2x1)ty=y1+(y2y1)tz=z1+(z2z1)tw=w1+(w2w1)t

或者更一般地,对于任意坐标 x i x_i xi(其中 i = 1 , 2 , … , n i = 1, 2, \ldots, n i=1,2,,n):

x i = x 1 , i + ( x 2 , i − x 1 , i ) t x_i = x_{1,i} + (x_{2,i} - x_{1,i})t xi=x1,i+(x2,ix1,i)t

这里 t t t 是参数,可以取任意实数。当 t = 0 t = 0 t=0 时,方程表示点 P 1 P_1 P1;当 t = 1 t = 1 t=1 时,方程表示点 P 2 P_2 P2;而当
t t t 取其他值时,方程表示直线上的其他点。

向量方程

向量方程是参数方程的一种更简洁的表示方式。首先,定义直线的方向向量为 d = P 2 − P 1 = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 , … , w 2 − w 1 ) \mathbf{d} = P_2 - P_1 = (x_2 - x_1, y_2 - y_1, z_2 - z_1, \ldots, w_2 - w_1) d=P2P1=(x2x1,y2y1,z2z1,,w2w1)。然后,直线的向量方程可以写为:

r = r 1 + t d \mathbf{r} = \mathbf{r}_1 + t\mathbf{d} r=r1+td

其中,

  • r = ( x , y , z , … , w ) \mathbf{r} = (x, y, z, \ldots, w) r=(x,y,z,,w) 是直线上任意一点的位置向量,
  • r 1 = P 1 = ( x 1 , y 1 , z 1 , … , w 1 ) \mathbf{r}_1 = P_1 = (x_1, y_1, z_1, \ldots, w_1) r1=P1=(x1,y1,z1,,w1) 是直线上一个已知点(例如 P 1 P_1 P1)的位置向量,
  • d = P 2 − P 1 \mathbf{d} = P_2 - P_1 d=P2P1 是直线的方向向量,
  • t t t 是参数。

这个向量方程表示直线上所有点的位置向量都是起点在 r 1 \mathbf{r}_1 r1、方向为 d \mathbf{d} d
的向量的线性组合(即缩放)。

参考文献

1.《凸分析》
2.文心一言,chatgpt

  • 21
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值