实变函数精解【16】

lebesgue测度

基础

  • A ∈ L ⇔ 存在 F σ 型集 F ⊂ A ,使 m ( A \ F ) = 0 ⇔ 存在 G δ 型集 G ⊃ A ,使得 m ( G \ A ) = 0 ⇔ 存在 F σ 型集 F 与 G δ 型集 F ⊂ A ⊂ G ,使得 m ( G \ F ) = 0 A \in \mathscr{L}\Leftrightarrow 存在F_\sigma型集F \subset A,使m(A\backslash F)=0\\\Leftrightarrow 存在G_\delta型集 G \supset A,使得m(G\backslash A)=0 \\\Leftrightarrow 存在F_\sigma型集F与G_\delta型集 F \subset A \subset G,使得m(G\backslash F)=0 AL存在Fσ型集FA,使m(A\F)=0存在Gδ型集GA,使得m(G\A)=0存在Fσ型集FGδ型集FAG,使得m(G\F)=0
  • 外测度表示为 m ∗ m^* m,内测度表示为 m m m

n维Lebesgue测度(n-dimensional Lebesgue measure)

是度量n维欧几里得空间中集合大小的一种重要工具。它扩展了我们熟悉的长度(1维)、面积(2维)和体积(3维)的概念。以下是n维Lebesgue测度的主要性质:

1. 定义性和非负性

  • 定义性:对于n维欧几里得空间中的任意集合,Lebesgue测度总是定义良好的。
  • 非负性:Lebesgue测度对于任何集合都是非负的,即对于任意集合 A ⊂ R n A \subset \mathbb{R}^n ARn,有 m n ( A ) ≥ 0 m_n(A) \geq 0 mn(A)0

2. 齐次性(Homogeneity)

  • 对于任何实数 c > 0 c > 0 c>0 和任何集合 A ⊂ R n A \subset \mathbb{R}^n ARn,有:
    m n ( c A ) = c n ⋅ m n ( A ) m_n(cA) = c^n \cdot m_n(A) mn(cA)=cnmn(A)
  • 这里 c A = { c x : x ∈ A } cA = \{ cx : x \in A \} cA={cx:xA} 表示集合 A A A 按比例 c c c 进行缩放。

3. 可数可加性(Countable Additivity)

  • 如果集合 A 1 , A 2 , … A_1, A_2, \ldots A1,A2, 是两两不交的(即 A i ∩ A j = ∅ A_i \cap A_j = \emptyset AiAj= 对于 i ≠ j i \neq j i=j),则:
    m n ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ m n ( A i ) m_n\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} m_n(A_i) mn(i=1Ai)=i=1mn(Ai)
  • 这意味着Lebesgue测度对可数并集是可加的。

4. 单调性(Monotonicity)

  • 如果 A ⊆ B A \subseteq B AB,那么:
    m n ( A ) ≤ m n ( B ) m_n(A) \leq m_n(B) mn(A)mn(B)
  • 这表明一个集合的测度不会超过包含它的更大集合的测度。

5. 平移不变性(Translation Invariance)

  • 对于任何集合 A ⊂ R n A \subset \mathbb{R}^n ARn 和任意向量 v ∈ R n v \in \mathbb{R}^n vRn,有:
    m n ( A + v ) = m n ( A ) m_n(A + v) = m_n(A) mn(A+v)=mn(A)
  • 这里 A + v = { x + v : x ∈ A } A + v = \{ x + v : x \in A \} A+v={x+v:xA} 表示集合 A A A 的平移。

6. σ-有限性(σ-finiteness)

  • n维Lebesgue测度是σ-有限的。这意味着可以将整个空间 R n \mathbb{R}^n Rn 分解为可数个测度有限的集合的并集。

7. 开集和闭集的测度

  • 任何n维欧几里得空间中的开集和闭集都是Lebesgue可测的。
  • 开矩形(以开区间为边的n维矩形)的Lebesgue测度等于其边长的乘积。

8. 可测集合与测度零集(Null Set)

  • 一个集合是可测的,当且仅当对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在一个开集 G ⊇ A G \supseteq A GA 使得 m n ( G ∖ A ) < ϵ m_n(G \setminus A) < \epsilon mn(GA)<ϵ
  • 测度零集是指Lebesgue测度为零的集合。如果一个集合是测度零集,它的任意子集也都是测度零集。

9. 逼近性质(Approximation Property)

  • 任意Lebesgue可测集合都可以通过开集(或闭集)逼近。对于任意Lebesgue可测集合 A A A 和任意 ϵ > 0 \epsilon > 0 ϵ>0,存在一个开集 G G G 和一个闭集 F F F ,使得 F ⊆ A ⊆ G F \subseteq A \subseteq G FAG m n ( G ∖ F ) < ϵ m_n(G \setminus F) < \epsilon mn(GF)<ϵ

10. Fubini定理

  • 如果 f f f R n \mathbb{R}^n Rn 上的Lebesgue可测函数,那么可以通过积分的次序交换性质(即Fubini定理)计算积分:
    ∫ R n f ( x 1 , … , x n )   d x 1 … d x n = ∫ R … ∫ R f ( x 1 , … , x n )   d x n … d x 1 \int_{\mathbb{R}^n} f(x_1, \ldots, x_n) \, dx_1 \ldots dx_n = \int_{\mathbb{R}} \ldots \int_{\mathbb{R}} f(x_1, \ldots, x_n) \, dx_n \ldots dx_1 Rnf(x1,,xn)dx1dxn=RRf(x1,,xn)dxndx1
  • 这说明Lebesgue测度的积分在n维空间中是可以分解的。

11. 连续性(Continuity)

  • 向上连续性:如果 A i ⊆ A i + 1 A_i \subseteq A_{i+1} AiAi+1 并且 A = ⋃ i = 1 ∞ A i A = \bigcup_{i=1}^{\infty} A_i A=i=1Ai,则有:
    m n ( A ) = lim ⁡ i → ∞ m n ( A i ) m_n(A) = \lim_{i \to \infty} m_n(A_i) mn(A)=ilimmn(Ai)
  • 向下连续性:如果 A i ⊇ A i + 1 A_i \supseteq A_{i+1} AiAi+1 并且 A = ⋂ i = 1 ∞ A i A = \bigcap_{i=1}^{\infty} A_i A=i=1Ai,且 m n ( A 1 ) < ∞ m_n(A_1) < \infty mn(A1)<,则有:
    m n ( A ) = lim ⁡ i → ∞ m n ( A i ) m_n(A) = \lim_{i \to \infty} m_n(A_i) mn(A)=ilimmn(Ai)

这些性质使得n维Lebesgue测度成为研究多维空间中的集合论、积分理论和几何分析的重要工具。

外测度和内测度

作为测度论中的两个重要概念,在描述集合的“大小”或“量度”时各有其独特的作用和特性。以下是它们之间的区别与联系:

区别

  1. 定义与逼近方式

    • 外测度:主要用于衡量一个集合包含点的数量,它考虑了集合的所有子集,并尝试通过覆盖该集合的可测集合序列(如开区间、闭区间等)来估计集合的大小。外测度倾向于从外部逼近集合的大小,因此它总是大于或等于集合的实际大小(如果集合可测的话)。
    • 内测度:则是从内部逼近集合大小的方法。它只计算集合内部能够完全覆盖的部分,即寻找包含在该集合内的可测集合序列,并将这些可测集合的测度之和作为原集合的内测度。内测度通常小于或等于集合的实际大小,因为它不考虑集合边界处的微小结构。
  2. 性质

    • 外测度具有非负性、单调性和次可数可加性等性质,这些性质使得外测度在定义和构造正规测度时非常有用。
    • 内测度则主要关注集合内部的覆盖情况,其性质相对较为简单,主要用于估计集合大小的下界。
  3. 应用场景

    • 外测度在统计分析、概率论和实分析等领域中具有广泛的应用。它用于定义和构造实数线上的正规测度(如勒贝格测度),并作为集合大小的一种上界估计。
    • 内测度虽然不如外测度那样常用,但它在处理特定问题(如确定一个集合是否可测)时仍然具有重要的作用。此外,在某些特定类型的集合(如具有特殊结构的集合)的大小估计中,内测度也可能发挥一定的作用。

联系

  1. 共同目标:尽管外测度和内测度在逼近方式和性质上存在差异,但它们的共同目标都是对集合的“大小”或“量度”进行描述和估计。

  2. 可测性判定:在测度论中,一个集合是否可测通常与其外测度和内测度的关系有关。具体来说,如果一个集合的外测度等于其所有子集的内测度之和(或等价地,等于其所有子集的外测度之和),则该集合是可测的。这一性质体现了外测度和内测度在判定集合可测性方面的紧密联系。

  3. 互补性:外测度和内测度在描述集合大小时具有互补性。外测度提供了集合大小的上界估计,而内测度则提供了下界估计。这种互补性使得我们在分析集合大小时能够更全面地考虑集合的内部和外部结构。

综上所述,外测度和内测度在测度论中各有其独特的地位和作用。它们之间的区别主要体现在定义、逼近方式、性质和应用场景等方面;而它们之间的联系则主要体现在共同目标、可测性判定和互补性等方面。

外测度 (Outer Measure)内测度 (Inner Measure)

是测度理论中两个重要的概念,它们分别用于描述集合的“大小”或“长度”,但它们的定义和使用场景有所不同。

外测度 (Outer Measure)

外测度是一种扩展的测度定义,主要用于定义那些不规则的集合的大小。它的定义基于覆盖的概念:

  1. 定义:对于集合 A ⊂ R n A \subset \mathbb{R}^n ARn,外测度 m ∗ ( A ) m^*(A) m(A) 是所有覆盖 A A A 的开集之和的最小值,即:
    m ∗ ( A ) = inf ⁡ { ∑ i = 1 ∞ m ( G i ) : A ⊂ ⋃ i = 1 ∞ G i , G i  是开集 } m^*(A) = \inf \left\{ \sum_{i=1}^{\infty} m(G_i) : A \subset \bigcup_{i=1}^{\infty} G_i, G_i \text{ 是开集} \right\} m(A)=inf{i=1m(Gi):Ai=1Gi,Gi 是开集}
    其中, m ( G i ) m(G_i) m(Gi) 是开集 G i G_i Gi 的测度。

  2. 性质

    • 单调性:如果 A ⊂ B A \subset B AB,则 m ∗ ( A ) ≤ m ∗ ( B ) m^*(A) \leq m^*(B) m(A)m(B)
    • 次可加性:对于任意的可数集合 A i A_i Ai,都有 m ∗ ( ⋃ i = 1 ∞ A i ) ≤ ∑ i = 1 ∞ m ∗ ( A i ) m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} m^*(A_i) m(i=1Ai)i=1m(Ai)
    • 与测度的关系:如果一个集合是可测的,那么它的外测度等于它的测度。

内测度 (Inner Measure)

内测度相对于外测度来说,定义得更加“内部”,通常用于定义集合的内部大小。它通过对包含在集合内部的紧集进行测度。

  1. 定义:对于集合 A ⊂ R n A \subset \mathbb{R}^n ARn,内测度 m ∗ ( A ) m_*(A) m(A) 是所有紧集 K K K 的测度的上确界,其中紧集 K K K 被包含在集合 A A A 内,即:
    m ∗ ( A ) = sup ⁡ { m ( K ) : K ⊂ A , K  是紧集 } m_*(A) = \sup \left\{ m(K) : K \subset A, K \text{ 是紧集} \right\} m(A)=sup{m(K):KA,K 是紧集}
    其中, m ( K ) m(K) m(K) 是紧集 K K K 的测度。

  2. 性质

    • 单调性:如果 A ⊂ B A \subset B AB,则 m ∗ ( A ) ≤ m ∗ ( B ) m_*(A) \leq m_*(B) m(A)m(B)
    • 次可加性:对于任意的可数集合 A i A_i Ai,都有 m ∗ ( ⋃ i = 1 ∞ A i ) ≤ ∑ i = 1 ∞ m ∗ ( A i ) m_*\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} m_*(A_i) m(i=1Ai)i=1m(Ai)
    • 与测度的关系:如果一个集合是可测的,那么它的内测度等于它的测度。

区别与联系

  1. 定义的不同

    • 外测度是通过外部的覆盖定义的,而内测度是通过内部的紧集定义的。
    • 外测度倾向于描述集合的“外部大小”,而内测度倾向于描述集合的“内部大小”。
  2. 测度的关系

    • 对于任意集合 A A A,总有 m ∗ ( A ) ≤ m ∗ ( A ) m_*(A) \leq m^*(A) m(A)m(A)
    • 如果集合 A A A 是可测的,则 m ∗ ( A ) = m ∗ ( A ) m_*(A) = m^*(A) m(A)=m(A) 且等于 A A A 的测度 m ( A ) m(A) m(A)
  3. 可测性

    • 外测度和内测度的一致性(即 m ∗ ( A ) = m ∗ ( A ) m_*(A) = m^*(A) m(A)=m(A))是一个集合是否可测的一个标准。

综上所述,外测度和内测度提供了研究集合大小的不同角度。外测度更关注集合的覆盖,内测度更关注集合的紧内部。通过外测度和内测度的比较,我们能够判断一个集合是否可测,以及更准确地理解集合的测度属性。

参考文献

1.《实变函数》
2. 文心一言

  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值