实变函数精解【15】

lebesgue测度

基础

  • 若 A n ∈ L ( n = 1 , 2 , . . . . ) , 则 ∩ A n ∈ L ;若 A , B ∈ L ,则 A \ B ∈ L 若A_n\in \mathscr{L} (n=1,2,....),则\cap A_n \in \mathscr{L} ;若A,B \in \mathscr{L} ,则A\backslash B \in \mathscr{L} AnL(n=1,2,....),AnL;若A,BL,则A\BL
  • 测度 m 下连续性 : { A n } ∈ L , A n ↑ A , 则 m A n → m A ( n → ∞ ) 上连续性 : { A n } ∈ L , A n ↓ A , 且 m A 1 < ∞ , 则 m A n → m A ( n → ∞ ) 测度m \\下连续性:\{A_n\} \in \mathscr{L},A_n \uparrow A,则mA_n\rightarrow mA(n\rightarrow \infty) \\上连续性:\{A_n\} \in \mathscr{L},A_n \downarrow A,且mA_1<\infty,则mA_n\rightarrow mA(n\rightarrow \infty) 测度m下连续性:{An}L,AnA,mAnmA(n)上连续性:{An}L,AnA,mA1<,mAnmA(n)
  • 若 A ⊂ R 是可数集,则 m A = 0 若 A 是区间 [ a , b ] , [ a , b ) , ( a , b ] , ( a , b ) 中的任何一个 a ≤ b , 则 m A = b − a ,当 a < b = ∞ 时,约定 b − a = ∞ ,其它无限区间仿此。 若 G = ∪ δ k 是开集, δ k 是其构成区间,则 m G = Σ δ k 若A \subset R是可数集,则mA=0 \\若A是区间[a,b],[a,b),(a,b],(a,b)中的任何一个 \\a\le b,则mA=b-a,当a<b=\infty时,约定b-a=\infty,其它无限区间仿此。 \\若G=\cup \delta_k是开集,\delta_k是其构成区间,则mG=\Sigma \delta_k AR是可数集,则mA=0A是区间[a,b],[a,b),(a,b],(a,b)中的任何一个ab,mA=ba,当a<b=时,约定ba=,其它无限区间仿此。G=δk是开集,δk是其构成区间,则mG=Σδk

测度的逼近

一、测度的逼近

测度的逼近是指通过一系列简单或可处理的集合来逐渐接近一个复杂或难以直接处理的集合,并在这个过程中研究集合测度的变化趋势。逼近的方式通常包括内测度逼近和外测度逼近。

  • 内测度逼近:从集合内部出发,用一系列包含在集合内部的简单集合(如开集、闭集等)来逼近原始集合。随着逼近集合的增多或逼近方式的改进,这些简单集合的并集的测度会越来越接近原始集合的内测度。
  • 外测度逼近:从集合外部出发,用一系列包含原始集合的简单集合来逼近它。这些简单集合的交集的测度会随着逼近集合的增多而逐渐减小,并最终趋近于原始集合的外测度(如果原始集合可测,则内外测度相等)。

二、测度的计算

测度的计算通常依赖于集合的具体结构和所定义的测度类型。对于简单的集合(如区间、矩形等),可以直接应用测度的定义或性质进行计算。对于复杂的集合,可能需要通过逼近、分割、对称性等技巧来简化计算过程。

例如,在欧几里得空间中,长度、面积和体积是常见的测度。对于线段,其长度可以直接通过端点坐标计算得出;对于矩形,其面积可以通过长和宽的乘积计算得出;对于球体,其体积可以通过半径和相应的体积公式计算得出。

三、例子

考虑一个单位正方形内的Cantor集。Cantor集是一个由迭代过程生成的无限不交的闭区间的并集,其构造过程中每一步都去掉中间的三分之一部分。Cantor集本身是不可数的,且不具有内点(即不包含任何开区间),但其外测度仍然为1(与单位正方形的面积相同)。

为了逼近Cantor集的测度,我们可以考虑其补集——即被去掉的那些区间。随着迭代次数的增加,这些被去掉的区间的总长度会越来越接近1(即单位正方形的面积),而剩余的Cantor集部分的长度(或更准确地说是测度)则会越来越接近0。然而,由于Cantor集是一个不可数集且不具有内点,其真实的测度(在勒贝格测度下)是0而不是其直观上的“大小”。

四、例题

例题:计算集合 { x ∈ R ∣ x 2 ≤ 4 } \{x \in \mathbb{R} | x^2 \leq 4\} {xRx24}在勒贝格测度下的测度。

解答:首先,集合 { x ∈ R ∣ x 2 ≤ 4 } \{x \in \mathbb{R} | x^2 \leq 4\} {xRx24}可以表示为闭区间 [ − 2 , 2 ] [-2, 2] [2,2]。在勒贝格测度下,闭区间的测度等于其长度的绝对值。因此,该集合的测度为 ∣ 2 − ( − 2 ) ∣ = 4 |2 - (-2)| = 4 ∣2(2)=4

注意:以上例题和解答仅用于说明测度的计算过程,并不直接涉及逼近性质。在实际问题中,可能需要利用逼近性质来处理更复杂的集合和测度计算问题。

例子:计算集合的勒贝格测度

考虑实数集 R \mathbb{R} R上的一个集合 A A A,定义为

A = ⋃ n = 1 ∞ ( 1 n + 1 , 1 n ) A = \bigcup_{n=1}^{\infty} \left( \frac{1}{n+1}, \frac{1}{n} \right) A=n=1(n+11,n1)

这个集合 A A A是由一系列开区间组成的并集,每个区间的左端点是 1 n + 1 \frac{1}{n+1} n+11,右端点是 1 n \frac{1}{n} n1,其中 n n n是正整数。

我们的目标是计算这个集合 A A A在勒贝格测度下的测度。

解答:

首先,注意到每个区间 ( 1 n + 1 , 1 n ) \left( \frac{1}{n+1}, \frac{1}{n} \right) (n+11,n1)的长度是

1 n − 1 n + 1 = 1 n ( n + 1 ) \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} n1n+11=n(n+1)1

接下来,我们需要计算所有这些区间长度的和,即

∑ n = 1 ∞ ( 1 n − 1 n + 1 ) \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) n=1(n1n+11)

这是一个典型的裂项相消级数。当我们将这些项相加时,大部分项都会相互抵消,只剩下首项和末项的未抵消部分。但是,在这个无限和的情况下,没有真正的“末项”,但我们可以观察到随着 n n n的增大, 1 n + 1 \frac{1}{n+1} n+11会趋近于0,因此整个和会趋近于首项的值,但会稍微小一点,因为总会有一个无限小的正数没有被完全抵消。

然而,在这个特定的情况下,由于裂项相消的性质,整个和实际上等于1减去无限多个趋近于0的数的和,这个无限多个数的和实际上等于0(在极限的意义下)。因此,整个和就是1。

具体来说,

∑ n = 1 ∞ ( 1 n − 1 n + 1 ) = ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ( 1 3 − 1 4 ) + ⋯ = 1 \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \cdots = 1 n=1(n1n+11)=(121)+(2131)+(3141)+=1

(注意:这里的等式是在极限的意义下成立的,即部分和随着项数的增加而趋近于1。)

因此,集合 A A A的勒贝格测度是1。

注意:
  • 在这个例子中,我们实际上并没有直接“逼近”集合 A A A来计算其测度,而是直接利用了集合 A A A的定义和勒贝格测度的性质(特别是可加性)来进行了计算。然而,在某些更复杂的情况下,逼近方法可能是必要的或更有用的。
  • 另外,需要注意的是,虽然集合 A A A在实数轴上占据了看似“很多”的空间(因为它包含了无限多个区间),但由于这些区间的总长度是有限的(在这个例子中是1),所以集合 A A A的测度是有限的。这说明了勒贝格测度与直观上的“大小”或“多少”可能不完全一致。

测度的逼近计算通常涉及到一个复杂集合,该集合难以直接计算其测度,因此我们需要通过一系列简单集合来逼近它,并计算这些简单集合的测度,从而估计或确定原始集合的测度。下面我将给出一个关于测度逼近计算的例子。
测度的逼近计算是一种通过一系列简单集合来估计或确定复杂集合测度的方法。这种方法在多个数学领域和实际应用中都非常有用。下面我将详细举例解释测度的逼近计算。
测度的逼近计算是数学分析中的一个重要概念,特别是在处理复杂集合或难以直接计算测度的集合时。下面我将通过一个具体的例题来详细解释测度的逼近计算。

例题:使用开区间覆盖逼近计算一个不规则图形的勒贝格外测度

考虑一个位于实数轴上的不规则图形 E E E,它由一系列孤立的点和一些小的线段组成,这些线段和点都位于区间 [ 0 , 1 ] [0,1] [0,1]内。由于这个图形不规则,我们很难直接计算其勒贝格外测度。但是,我们可以通过一系列开区间来覆盖这个图形,并计算这些开区间的总长度,从而逼近图形的勒贝格外测度。

步骤 1:选择初始覆盖

首先,我们选择一个相对粗糙的覆盖,即使用较少的、较大的开区间来覆盖图形 E E E。例如,我们可以选择两个开区间 ( 0 , 3 4 ) (0, \frac{3}{4}) (0,43) ( 1 4 , 1 ) (\frac{1}{4}, 1) (41,1)来覆盖图形(注意这里的选择是任意的,只是为了示例)。这两个区间的总长度为 3 4 + 3 4 − 1 4 = 1 \frac{3}{4} + \frac{3}{4} - \frac{1}{4} = 1 43+4341=1(但这里显然存在重叠,实际覆盖时不需要重叠,只是为了说明如何计算总长度)。

步骤 2:细化覆盖

接下来,我们尝试使用更多的、更小的开区间来更精细地覆盖图形 E E E。假设通过更仔细的观察,我们发现图形 E E E主要由以下几个部分组成:一个点集 { 0.1 , 0.5 , 0.8 } \{0.1, 0.5, 0.8\} {0.1,0.5,0.8}和一些短的线段(如 [ 0.2 , 0.3 ] [0.2, 0.3] [0.2,0.3] [ 0.6 , 0.7 ] [0.6, 0.7] [0.6,0.7])。我们可以选择以下开区间来覆盖这些部分: ( 0.05 , 0.15 ) , ( 0.2 , 0.3 ) , ( 0.45 , 0.55 ) , ( 0.75 , 0.85 ) , ( 0.7 , 0.8 ) (0.05, 0.15), (0.2, 0.3), (0.45, 0.55), (0.75, 0.85), (0.7, 0.8) (0.05,0.15),(0.2,0.3),(0.45,0.55),(0.75,0.85),(0.7,0.8)(注意这里有些区间是重叠的,但在计算总长度时需要去除重叠部分)。

去除重叠后,这些区间的总长度大约为 0.1 + 0.1 + 0.1 + 0.1 + 0.05 = 0.45 0.1 + 0.1 + 0.1 + 0.1 + 0.05 = 0.45 0.1+0.1+0.1+0.1+0.05=0.45(这里是一个近似的值,实际计算时需要根据区间的具体位置和长度来精确计算)。

步骤 3:逼近极限

如果我们继续这个过程,使用更多的、更小的开区间来覆盖图形 E E E,并去除所有重叠部分,那么这些开区间的总长度将会越来越接近图形 E E E的勒贝格外测度。在极限情况下,当我们使用的开区间数量趋于无穷大且每个区间的长度都趋于0时,这些开区间的总长度将会收敛到图形 E E E的勒贝格外测度。

然而,在实际应用中,我们通常无法真正达到这个极限情况。相反,我们会选择一个足够小的区间大小和足够多的区间数量,使得开区间的总长度与真实测度之间的误差在可接受的范围内。

注意:
  • 在这个过程中,我们需要注意去除重叠部分,因为重叠部分会被重复计算。
  • 勒贝格外测度具有可加性(对于不相交的集合),但在处理有重叠的覆盖时,我们需要特别小心。
  • 在实际应用中,逼近计算的结果可能受到所选覆盖方式、区间大小和数量的影响。因此,我们需要根据具体情况选择合适的逼近方法和参数。

例子:使用开区间覆盖逼近计算一个不规则图形的面积

问题描述

假设我们有一个在二维平面上的不规则图形 G G G,其边界复杂,难以用简单的几何形状(如矩形、圆形等)来精确表示。我们需要计算这个图形的面积,但直接计算可能非常困难或不可能。因此,我们可以使用一系列开区间(或更准确地说,开矩形)来覆盖这个图形,并通过计算这些开区间的面积之和来逼近图形的真实面积。

逼近过程
  1. 选择初始覆盖
    首先,我们选择一个足够大的开矩形 R 1 R_1 R1,使其完全覆盖图形 G G G。这个矩形的面积会远大于图形 G G G的实际面积,但它是我们逼近过程的起点。

  2. 细化覆盖
    接下来,我们将 R 1 R_1 R1细分为更小的开矩形。这些小矩形应该比 R 1 R_1 R1更紧密地贴合图形 G G G的边界,但仍然要完全覆盖图形 G G G。设这些小矩形为 R 2 1 , R 2 2 , … , R 2 n R_2^1, R_2^2, \ldots, R_2^n R21,R22,,R2n(其中 n n n是这些小矩形的数量)。

  3. 重复细化
    我们可以继续这个过程,将每个小矩形 R 2 i R_2^i R2i进一步细分为更小的矩形 R 3 i , 1 , R 3 i , 2 , … R_3^{i,1}, R_3^{i,2}, \ldots R3i,1,R3i,2,。这样,我们得到了一系列更小的矩形,它们更紧密地贴合图形 G G G的边界。

  4. 计算面积和
    对于每一层细化,我们计算所有小矩形的面积之和。这个面积和会随着细化程度的增加而越来越接近图形 G G G的真实面积。

  5. 观察收敛性
    如果我们继续这个过程无限多次(在理论上),那么面积和将会收敛到一个极限值。这个极限值就是图形 G G G的面积的逼近值。

实际应用

在实际应用中,我们不可能进行无限多次细化。因此,我们会在某个点停止细化,并接受此时计算得到的面积和作为图形 G G G面积的近似值。这个近似值的准确性取决于我们选择的细化程度和覆盖方式。

注意事项
  • 覆盖冗余:在逼近过程中,我们可能会覆盖图形 G G G以外的区域。这会导致我们计算得到的面积和偏大。为了减小这种误差,我们应该尽量使覆盖的矩形紧密贴合图形 G G G的边界。
  • 计算复杂度:随着细化程度的增加,矩形的数量会迅速增加,从而导致计算量急剧上升。因此,在实际应用中,我们需要在计算精度和计算复杂度之间做出权衡。
  • 逼近的极限:在理论上,逼近的极限就是图形 G G G的真实面积。但在实际应用中,由于各种因素的影响(如数值精度、计算误差等),我们可能无法完全达到这个极限。

通过这个例子,我们可以看到测度的逼近计算是一种非常有用的方法,它可以帮助我们处理那些难以直接计算测度的复杂集合。

例子:使用开区间逼近计算Cantor集的勒贝格外测度

Cantor集是一个在 [ 0 , 1 ] [0,1] [0,1]区间内构造的、具有特殊性质的集合。它通过不断去掉区间中间的三分之一部分来构造。Cantor集本身是不可数的,且没有内点(即不包含任何开区间),但其勒贝格外测度仍然为1(与 [ 0 , 1 ] [0,1] [0,1]区间的长度相同)。

为了逼近Cantor集的勒贝格外测度,我们可以考虑其补集——即被去掉的那些区间。随着迭代次数的增加,这些被去掉的区间的总长度会越来越接近 [ 0 , 1 ] [0,1] [0,1]区间的长度,而剩余的Cantor集部分的勒贝格外测度则会越来越接近0(尽管Cantor集本身是不可数的,且其勒贝格内测度为0)。

逼近过程:
  1. 第0次迭代:原始区间 [ 0 , 1 ] [0,1] [0,1],长度(也即测度)为1。

  2. 第1次迭代:去掉中间的 ( 1 3 , 2 3 ) \left(\frac{1}{3}, \frac{2}{3}\right) (31,32)区间,剩余部分为 [ 0 , 1 3 ] ∪ [ 2 3 , 1 ] \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right] [0,31][32,1],总长度为 1 3 + 1 3 = 2 3 \frac{1}{3} + \frac{1}{3} = \frac{2}{3} 31+31=32。被去掉的区间长度为 1 3 \frac{1}{3} 31

  3. 第2次迭代:在每个剩余的子区间内继续去掉中间的 1 3 \frac{1}{3} 31部分。即,在 [ 0 , 1 3 ] \left[0, \frac{1}{3}\right] [0,31]内去掉 ( 1 9 , 2 9 ) \left(\frac{1}{9}, \frac{2}{9}\right) (91,92),在 [ 2 3 , 1 ] \left[\frac{2}{3}, 1\right] [32,1]内去掉 ( 7 9 , 8 9 ) \left(\frac{7}{9}, \frac{8}{9}\right) (97,98)。剩余部分总长度为 2 9 + 2 9 = 4 9 \frac{2}{9} + \frac{2}{9} = \frac{4}{9} 92+92=94。新增被去掉的区间总长度为 1 9 + 1 9 = 2 9 \frac{1}{9} + \frac{1}{9} = \frac{2}{9} 91+91=92

  4. 继续迭代:重复上述过程,每次迭代都会将剩余区间的每个部分再细分并去掉中间的 1 3 \frac{1}{3} 31。随着迭代次数的增加,被去掉的区间的总长度会越来越接近1,而剩余的Cantor集部分的勒贝格外测度则会越来越接近0。

计算过程:

由于Cantor集的构造是无限进行的,我们不能直接通过有限次迭代来计算其勒贝格外测度。但是,我们可以观察到,随着迭代次数的增加,被去掉的区间的总长度会形成一个收敛于1的数列。具体来说,这个数列是 1 3 , 1 3 + 2 9 , 1 3 + 2 9 + 4 27 , … \frac{1}{3}, \frac{1}{3} + \frac{2}{9}, \frac{1}{3} + \frac{2}{9} + \frac{4}{27}, \ldots 31,31+92,31+92+274,,它是一个等比数列的和,首项为 1 3 \frac{1}{3} 31,公比为 1 3 \frac{1}{3} 31,因此其和为 1 3 1 − 1 3 = 1 2 × 3 1 = 1 \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2} \times \frac{3}{1} = 1 13131=21×13=1(注意这里实际上是一个极限过程,因为等比数列的和在无限项时收敛于1)。

因此,我们可以说Cantor集的勒贝格外测度是1,尽管Cantor集本身不包含任何开区间,且其勒贝格内测度为0。这个例子展示了如何通过逼近过程来计算一个复杂集合的测度。

需要注意的是,在实际的数学分析中,我们通常不会直接进行这样的迭代计算来求解测度,而是会利用测度的定义和性质(如可加性、单调性等)来推导结果。但是,这个例子提供了一个直观的理解,说明了逼近过程在测度计算中的应用。

1. 矩形逼近平面图形的面积

考虑一个平面上的有界简单闭曲线(如圆、椭圆等),我们可以使用一系列矩形来逼近该曲线围成的区域。具体来说,我们可以将曲线围成的区域划分为许多小的矩形(或更一般地,小的多边形),然后计算这些矩形的面积之和。随着矩形数量的增加和矩形尺寸的减小,这些矩形面积之和会越来越接近曲线围成的区域的真实面积。

2. 阶梯函数逼近连续函数

在积分学中,我们经常使用阶梯函数(或更一般地,简单函数)来逼近连续函数,以便计算其积分。阶梯函数是由一系列水平线段组成的函数,它在每个小区间内都是常数。通过让阶梯函数的小区间越来越细,我们可以使阶梯函数越来越接近原始的连续函数。然后,我们可以计算阶梯函数在每个小区间上的积分(这很简单,因为它们是常数函数),并将这些积分相加来逼近原始函数的积分。

3. 有限覆盖逼近

对于任意一个有界集合 E E E,在欧几里得空间中,我们可以使用一系列开球(或更一般地,开集)来覆盖它。这些开球(或开集)的半径可以任意小,但数量是有限的(尽管随着半径的减小,数量会增加)。然后,我们可以计算这些开球(或开集)的体积(或测度)之和,并观察到随着半径的减小,这个和会越来越接近集合 E E E的勒贝格外测度。这个过程是勒贝格外测度定义的基础之一。

4. 不可数集的测度逼近

虽然直接计算某些不可数集的测度可能很困难(如Cantor集),但我们可以通过逼近其补集来间接估计其测度。例如,在Cantor集的例子中,我们通过计算被去掉的区间的总长度来逼近Cantor集的补集的测度,然后用1减去这个值来估计Cantor集的勒贝格外测度。

5. 概率空间中的逼近

在概率论中,我们经常需要计算某个事件的概率,但这个事件可能由复杂的集合表示。此时,我们可以使用一系列简单事件(即对应简单集合的事件)来逼近该事件。具体来说,我们可以将复杂事件分解为一系列互斥且穷尽的简单事件的并集,然后计算这些简单事件的概率之和来逼近原始事件的概率。

这些例子展示了逼近计算在测度论、积分学、概率论等多个数学领域中的应用。通过逼近计算,我们可以处理那些直接计算起来过于复杂或不可能的问题。
测度的逼近计算是测度理论中的一个重要概念,它涉及如何通过简单的集合或函数来逼近复杂的集合或函数,从而计算其测度。这个过程在实际应用中非常重要,因为在许多情况下,复杂的集合或函数的测度难以直接计算,需要通过一些简单的近似来实现。下面我将通过两个具体的例子来详细解释这一过程:一个是关于集合测度的逼近,另一个是关于函数测度的逼近。

例子1:集合测度的逼近

假设我们有一个复杂的集合 A A A 在实数轴上,我们想计算其Lebesgue测度 m ( A ) m(A) m(A)。由于 A A A 可能有非常复杂的边界,直接计算其测度可能很困难。我们可以通过简单的开区间或闭区间来逼近 A A A,然后通过这些简单集合的测度和来近似 m ( A ) m(A) m(A)

步骤:

  1. 选择逼近集: 选取一系列简单的开区间或闭区间 { I n } \{I_n\} {In},使得每个 I n I_n In 包含在集合 A A A 中,并且这些区间的并集尽可能地逼近 A A A。通常,选取这些区间使得 A ⊆ ⋃ n = 1 ∞ I n A \subseteq \bigcup_{n=1}^{\infty} I_n An=1In

  2. 计算逼近集的测度: 计算每个区间 I n I_n In 的测度 m ( I n ) m(I_n) m(In)。因为区间 I n I_n In 是简单的,所以测度可以通过其长度直接计算得到。

  3. 求和得到逼近测度: 将所有选取的区间的测度相加,即得到集合 A A A 的上逼近测度:
    m ( A ) ≈ ∑ n = 1 ∞ m ( I n ) m(A) \approx \sum_{n=1}^{\infty} m(I_n) m(A)n=1m(In)
    随着选取的区间越来越精细,这个和将越来越接近于 A A A 的实际测度。

例子:
A = [ 0 , 1 ] ∪ [ 2 , 3 ] A = [0, 1] \cup [2, 3] A=[0,1][2,3]。可以选取区间 I 1 = [ 0 , 1.1 ] I_1 = [0, 1.1] I1=[0,1.1] I 2 = [ 1.9 , 3 ] I_2 = [1.9, 3] I2=[1.9,3],那么 m ( I 1 ) = 1.1 m(I_1) = 1.1 m(I1)=1.1 m ( I 2 ) = 1.1 m(I_2) = 1.1 m(I2)=1.1,因此逼近的测度为 1.1 + 1.1 = 2.2 1.1 + 1.1 = 2.2 1.1+1.1=2.2。显然这大于实际的测度 m ( A ) = 2 m(A) = 2 m(A)=2,但随着我们进一步缩小 I 1 I_1 I1 I 2 I_2 I2 的边界,逼近值会更接近实际值。

例子2:函数测度的逼近(勒贝格积分)

对于一个函数 f ( x ) f(x) f(x),我们可能希望计算它在某个区间上的勒贝格积分。勒贝格积分的计算通常通过简单函数(阶梯函数)来逼近原函数。

步骤:

  1. 选择逼近函数: 选取一系列简单函数 { s n ( x ) } \{s_n(x)\} {sn(x)} 来逼近函数 f ( x ) f(x) f(x),其中简单函数的形式是常数值的分段函数。确保 s n ( x ) ≤ f ( x ) s_n(x) \leq f(x) sn(x)f(x) s n ( x ) ≥ f ( x ) s_n(x) \geq f(x) sn(x)f(x) 在逼近过程中是单调逼近的。

  2. 计算简单函数的积分: 计算每个简单函数的勒贝格积分,这些积分通过简单函数的常数值和其对应的测度区间的测度乘积得到。

  3. 极限过程: 随着 n n n 增大,逼近函数 s n ( x ) s_n(x) sn(x) 的勒贝格积分会逐渐逼近原函数 f ( x ) f(x) f(x) 的勒贝格积分。

例子:
f ( x ) = x f(x) = x f(x)=x 在区间 [ 0 , 1 ] [0, 1] [0,1] 上。我们可以选择简单函数 s n ( x ) s_n(x) sn(x) 为分段常数函数,例如:
s n ( x ) = { 0 , x ∈ [ 0 , 1 n ] 1 n , x ∈ [ 1 n , 2 n ] ⋮ 1 , x ∈ [ n − 1 n , 1 ] s_n(x) = \begin{cases} 0, & x \in [0, \frac{1}{n}] \\ \frac{1}{n}, & x \in [\frac{1}{n}, \frac{2}{n}] \\ \vdots \\ 1, & x \in [\frac{n-1}{n}, 1] \end{cases} sn(x)= 0,n1,1,x[0,n1]x[n1,n2]x[nn1,1]
随着 n n n 越来越大, s n ( x ) s_n(x) sn(x) 越来越接近 f ( x ) = x f(x) = x f(x)=x,勒贝格积分 ∫ 0 1 s n ( x )   d x \int_0^1 s_n(x) \, dx 01sn(x)dx 也越来越接近 ∫ 0 1 x   d x = 1 2 \int_0^1 x \, dx = \frac{1}{2} 01xdx=21

这些例子说明了测度的逼近计算的基本思想和步骤,在实际应用中,可以根据具体问题选择合适的逼近方式。

勒贝格积分计算例子

勒贝格积分是一种广泛用于现代分析中的积分概念,它的核心思想是通过测量函数的“值域”来计算积分,而不是直接从“自变量”的角度去考虑。勒贝格积分特别适合处理复杂的函数,尤其是那些在某些区间上具有不连续或复杂行为的函数。

为了详细解释勒贝格积分的计算,下面我将通过几个步骤逐步进行说明,并给出具体的例子。

1. 简单函数的勒贝格积分

简单函数 是一种特别简单的函数,其值是有限个常数。简单函数通常表示为:
s ( x ) = ∑ i = 1 n a i χ A i ( x ) s(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x) s(x)=i=1naiχAi(x)
其中, a i a_i ai 是常数, χ A i ( x ) \chi_{A_i}(x) χAi(x) 是集合 A i A_i Ai 上的指示函数(即 χ A i ( x ) \chi_{A_i}(x) χAi(x) A i A_i Ai 上取值为 1,否则为 0)。

勒贝格积分 对简单函数的定义为:
∫ E s ( x )   d x = ∑ i = 1 n a i ⋅ m ( A i ) \int_E s(x) \, dx = \sum_{i=1}^{n} a_i \cdot m(A_i) Es(x)dx=i=1naim(Ai)
其中, m ( A i ) m(A_i) m(Ai) 是集合 A i A_i Ai 的勒贝格测度。

例子:
设简单函数 s ( x ) s(x) s(x) 定义在区间 [ 0 , 2 ] [0, 2] [0,2] 上为:
s ( x ) = { 1 , x ∈ [ 0 , 1 ) 2 , x ∈ [ 1 , 2 ] s(x) = \begin{cases} 1, & x \in [0, 1) \\ 2, & x \in [1, 2] \end{cases} s(x)={1,2,x[0,1)x[1,2]
那么勒贝格积分为:
∫ [ 0 , 2 ] s ( x )   d x = 1 ⋅ m ( [ 0 , 1 ) ) + 2 ⋅ m ( [ 1 , 2 ] ) = 1 ⋅ 1 + 2 ⋅ 1 = 3 \int_{[0, 2]} s(x) \, dx = 1 \cdot m([0, 1)) + 2 \cdot m([1, 2]) = 1 \cdot 1 + 2 \cdot 1 = 3 [0,2]s(x)dx=1m([0,1))+2m([1,2])=11+21=3

2. 一般非负函数的勒贝格积分

对于一般的非负函数 f ( x ) f(x) f(x),勒贝格积分通过一系列简单函数的极限来定义。假设 f ( x ) f(x) f(x) 是一个非负可测函数,则可以找到一列单调递增的简单函数 s n ( x ) s_n(x) sn(x) 来逼近 f ( x ) f(x) f(x)
s n ( x ) ≤ s n + 1 ( x ) ≤ f ( x ) s_n(x) \leq s_{n+1}(x) \leq f(x) sn(x)sn+1(x)f(x)
勒贝格积分定义为:
∫ E f ( x )   d x = lim ⁡ n → ∞ ∫ E s n ( x )   d x \int_E f(x) \, dx = \lim_{n \to \infty} \int_E s_n(x) \, dx Ef(x)dx=nlimEsn(x)dx

例子:
f ( x ) = x f(x) = x f(x)=x 在区间 [ 0 , 1 ] [0, 1] [0,1] 上,我们可以构造一列简单函数来逼近 f ( x ) f(x) f(x)
s n ( x ) = ∑ k = 1 n k n χ [ k − 1 n , k n ) ( x ) s_n(x) = \sum_{k=1}^{n} \frac{k}{n} \chi_{[\frac{k-1}{n}, \frac{k}{n})}(x) sn(x)=k=1nnkχ[nk1,nk)(x)
这里, s n ( x ) s_n(x) sn(x) 在每个子区间 [ k − 1 n , k n ) [\frac{k-1}{n}, \frac{k}{n}) [nk1,nk) 上取常数值 k n \frac{k}{n} nk

计算这些简单函数的勒贝格积分:
∫ 0 1 s n ( x )   d x = ∑ k = 1 n k n ⋅ m ( [ k − 1 n , k n ) ) = ∑ k = 1 n k n ⋅ 1 n = 1 n 2 ∑ k = 1 n k \int_0^1 s_n(x) \, dx = \sum_{k=1}^{n} \frac{k}{n} \cdot m\left(\left[\frac{k-1}{n}, \frac{k}{n}\right)\right) = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^{n} k 01sn(x)dx=k=1nnkm([nk1,nk))=k=1nnkn1=n21k=1nk
已知 ∑ k = 1 n k = n ( n + 1 ) 2 \sum_{k=1}^{n} k = \frac{n(n+1)}{2} k=1nk=2n(n+1),所以:
∫ 0 1 s n ( x )   d x = 1 n 2 ⋅ n ( n + 1 ) 2 = n + 1 2 n \int_0^1 s_n(x) \, dx = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2n} 01sn(x)dx=n212n(n+1)=2nn+1
n n n 趋向于无穷大时, n + 1 2 n \frac{n+1}{2n} 2nn+1 趋向于 1 2 \frac{1}{2} 21,因此:
∫ 0 1 x   d x = 1 2 \int_0^1 x \, dx = \frac{1}{2} 01xdx=21
这也是使用黎曼积分得到的结果。

3. 一般可测函数的勒贝格积分

对于一般可测函数 f ( x ) f(x) f(x),我们可以将其分解为正负部分:
f ( x ) = f + ( x ) − f − ( x ) f(x) = f^+(x) - f^-(x) f(x)=f+(x)f(x)
其中 f + ( x ) = max ⁡ ( f ( x ) , 0 ) f^+(x) = \max(f(x), 0) f+(x)=max(f(x),0) f − ( x ) = max ⁡ ( − f ( x ) , 0 ) f^-(x) = \max(-f(x), 0) f(x)=max(f(x),0) 都是非负函数。勒贝格积分定义为:
∫ E f ( x )   d x = ∫ E f + ( x )   d x − ∫ E f − ( x )   d x \int_E f(x) \, dx = \int_E f^+(x) \, dx - \int_E f^-(x) \, dx Ef(x)dx=Ef+(x)dxEf(x)dx
前提是两部分的积分都有限。

例子:
f ( x ) = x − 1 2 f(x) = x - \frac{1}{2} f(x)=x21 在区间 [ 0 , 1 ] [0, 1] [0,1] 上。我们可以将 f ( x ) f(x) f(x) 分解为:
f + ( x ) = { 0 , x ∈ [ 0 , 1 2 ) x − 1 2 , x ∈ [ 1 2 , 1 ] f^+(x) = \begin{cases} 0, & x \in [0, \frac{1}{2}) \\ x - \frac{1}{2}, & x \in [\frac{1}{2}, 1] \end{cases} f+(x)={0,x21,x[0,21)x[21,1]
f − ( x ) = { 1 2 − x , x ∈ [ 0 , 1 2 ) 0 , x ∈ [ 1 2 , 1 ] f^-(x) = \begin{cases} \frac{1}{2} - x, & x \in [0, \frac{1}{2}) \\ 0, & x \in [\frac{1}{2}, 1] \end{cases} f(x)={21x,0,x[0,21)x[21,1]
计算勒贝格积分:
∫ 0 1 f + ( x )   d x = ∫ 1 2 1 ( x − 1 2 )   d x = 1 8 \int_0^1 f^+(x) \, dx = \int_{\frac{1}{2}}^1 \left(x - \frac{1}{2}\right) \, dx = \frac{1}{8} 01f+(x)dx=211(x21)dx=81
∫ 0 1 f − ( x )   d x = ∫ 0 1 2 ( 1 2 − x )   d x = 1 8 \int_0^1 f^-(x) \, dx = \int_0^{\frac{1}{2}} \left(\frac{1}{2} - x\right) \, dx = \frac{1}{8} 01f(x)dx=021(21x)dx=81
所以:
∫ 0 1 f ( x )   d x = 1 8 − 1 8 = 0 \int_0^1 f(x) \, dx = \frac{1}{8} - \frac{1}{8} = 0 01f(x)dx=8181=0

总结

勒贝格积分通过将函数的值域细分为简单的部分,再通过这些部分的测度来计算积分,具有很强的灵活性,特别适用于处理复杂的函数和不规则区域。通过选择合适的逼近函数,可以计算出许多复杂函数的积分。

参考文献

1.《实变函数》
2. 文心一言
3. chatgpt

  • 14
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值