探索 Lunar:高效零知识证明的新突破
1. 引言
在密码学领域,零知识证明(zkSNARKs)一直是研究的热点。它允许证明者向验证者证明某个陈述的真实性,而无需透露陈述的具体内容。本文将介绍一种名为 Lunar 的新型预处理 zkSNARK 家族,它在通用和可更新的 SRS 模型下具有恒定大小的证明,并且在证明大小和证明者运行时间方面优于先前的工作。
2. 多项式承诺与相关协议
多项式承诺是一种重要的密码学原语。通过多项式承诺,证明者可以将多项式 $p$ 压缩成比其所有系数串联起来短得多的消息,并在后续对 $p$ 的求值进行承诺开启,以说服验证者 $y = p(x)$ 对于公共点 $x$ 和 $y$ 成立。
在一些交互式证明系统(IOP)抽象中,如代数全息证明(AHP)和多项式 IOP,证明者和验证者进行交互。证明者提供一组多项式的预言机访问,验证者发送随机挑战(如果是公共硬币协议)。协议结束时,验证者要求对这些多项式进行求值,并根据响应决定接受或拒绝。理想化低阶协议(ILDPs)的抽象过程类似,但最终验证者要求验证证明者发送的预言机上的一组多项式恒等式。
为了从 AHP/ILDPs 构建具有通用 SRS 的 zkSNARK,我们让证明者对从 AHP/ILDP 证明者获得的多项式进行承诺,然后使用多项式承诺的开启功能以可靠的方式响应求值查询。
3. Lunar 方案介绍
我们提出了 Lunar 家族的新型预处理 zkSNARKs,在通用和可更新的 SRS 模型下具有恒定大小的证明,并且在证明大小和证明者运行时间方面优于先前的工作。
超级会员免费看
订阅专栏 解锁全文
698

被折叠的 条评论
为什么被折叠?



