多项式全息交互式 oracle 证明(PHP)技术解析
1. 预备知识
在深入了解多项式全息交互式 oracle 证明(PHP)之前,我们需要掌握一些必要的代数预备知识。
- 通用关系 :通用关系 (R) 是由三元组 ((R, x, w)) 组成的集合,其中 (R) 是一个关系,(x \in D_x) 被称为实例(或输入),(w \in D_w) 是见证,(D_x) 和 (D_w) 是可能依赖于 (R) 的域。给定 (R),对应的通用语言 (L(R)) 是集合 ({(R, x) : \exists w : (R, x, w) \in R})。
- 代数预备知识
- 消失多项式和拉格朗日基多项式 :对于任何子集 (S \subseteq F),我们用 (Z_S(X) := \prod_{s \in S}(X - s)) 表示 (S) 的消失多项式,用 (L_S^s(X)) 表示第 (s) 个拉格朗日基多项式,它是唯一的次数至多为 (|S| - 1) 的多项式,使得对于任何 (s’ \in S),当 (s = s’) 时其值为 1,否则为 0。
- 乘法子群 :如果 (H \subseteq F) 是一个阶为 (n) 的乘法子群,那么它的消失多项式有一个紧凑的表示 (Z_H(X) = (X^{|H|} - 1))。同样,对于这样的 (H),有 (L_H^{\eta}(X) = \frac{\eta}{|H|} \cdot \frac{X^{|H| - 1}}{X - \et
超级会员免费看
订阅专栏 解锁全文
659

被折叠的 条评论
为什么被折叠?



