3、多项式全息交互式 oracle 证明(PHP)技术解析

多项式全息交互式 oracle 证明(PHP)技术解析

1. 预备知识

在深入了解多项式全息交互式 oracle 证明(PHP)之前,我们需要掌握一些必要的代数预备知识。

  • 通用关系 :通用关系 (R) 是由三元组 ((R, x, w)) 组成的集合,其中 (R) 是一个关系,(x \in D_x) 被称为实例(或输入),(w \in D_w) 是见证,(D_x) 和 (D_w) 是可能依赖于 (R) 的域。给定 (R),对应的通用语言 (L(R)) 是集合 ({(R, x) : \exists w : (R, x, w) \in R})。
  • 代数预备知识
    • 消失多项式和拉格朗日基多项式 :对于任何子集 (S \subseteq F),我们用 (Z_S(X) := \prod_{s \in S}(X - s)) 表示 (S) 的消失多项式,用 (L_S^s(X)) 表示第 (s) 个拉格朗日基多项式,它是唯一的次数至多为 (|S| - 1) 的多项式,使得对于任何 (s’ \in S),当 (s = s’) 时其值为 1,否则为 0。
    • 乘法子群 :如果 (H \subseteq F) 是一个阶为 (n) 的乘法子群,那么它的消失多项式有一个紧凑的表示 (Z_H(X) = (X^{|H|} - 1))。同样,对于这样的 (H),有 (L_H^{\eta}(X) = \frac{\eta}{|H|} \cdot \frac{X^{|H| - 1}}{X - \et
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值