机器学习实践——利用PCA简化数据

什么是降维?降维的目的又是什么?

现实世界中的数据往往具有多个特征值,但是在众多特征中起到关键作用的往往只是个别特征,或是特征之间存在着依赖的关系,从众多特征中选取较为重要特征的过程就称之为降维

降维的目的就是对输入数据进行削减,由此剔除数据中的噪音并提高机器学习方法的性能。

降维的方法很多,这里介绍应用最为广泛的方法:主成分分析法(PCA)。

在PCA中,数据有原来的坐标系转换到新的坐标系中,第一个新的坐标轴是原始数据中方差最大的方向,第二个坐标轴是次最大方差且与第一个坐标轴正交,该过程一直重复,次数为原始数据中特征的数目。我们会发现大部分方差都包含在最前面的新坐标轴中。因此忽略余下的坐标轴,从而起到降维的效果。

那么,我们如何得到这些包含最大差异性的主成分方向呢(方差最大的方向)?事实上,通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值及特征向量,选择特征值最大(也即包含方差最大)的N个特征所对应的特征向量组成的矩阵,我们就可以将数据矩阵转换到新的空间当中,实现数据特征的降维(N维)。

在NumPy中实现PCA

将数据转换成前N个主成分伪代码:

去除平均值
计算协方差矩阵
计算协方差矩阵的特征值和特征向量
将特征值排序
保留前N个最大的特征值对应的特征向量
将数据转换到上面得到的N个特征向量构建的新空间中(实现了特征压缩)

代码部分:

# encoding: utf-8
from numpy import *
import matplotlib.pyplot as plt
def loadData(filename):
    fr = open(filename)
    stringArr = [line.strip().split('\t') for line in fr.readlines()]
    #用map函数将数据变为float类型
    datArr = [map(float,line) for line in stringArr]
    return mat(datArr)
#topNfeat:选取前N个特征值,如果不指定就默认为9999
def pca(dataMat,topNfeat=9999):
    #求均值
    meanVal = mean(dataMat)
    #去均值
    meanRemoved = dataMat - meanVal
    #得到协方差矩阵
    covMat = cov(meanRemoved,rowvar=0)
    #得到特征值与特征值向量
    eigVals,eigVects = linalg.eig(mat(covMat))
    #argsort():对特征值矩阵进行由小到大排序,返回对应排序后的索引
    eigIndex = argsort(eigVals)
    #逆序选取最大的N个特征值的索引
    eigIndex = eigIndex[:-(topNfeat+1):-1]
    #将N个特征值的特征向量提取出来,组成压缩矩阵
    redEigVects = eigVects[:,eigIndex]
    #将除均值的矩阵乘上压缩矩阵,转换到新的空间
    lowDDataMat = meanRemoved * redEigVects
    #利用降维后的数据反构出原数据矩阵,
    reconMat = (lowDDataMat * redEigVects.T) + meanVal
    return lowDDataMat,reconMat

dataMat = loadData('Ch13/testSet.txt')
lowDMat,reconMat = pca(dataMat,1)
fig = plt.figure()
axex = fig.add_subplot(111)
axex.scatter(dataMat[:,0].flatten().A[0],dataMat[:,1].flatten().A[0],\
                    marker='^',s=90)
axex.scatter(reconMat[:,0].flatten().A[0],reconMat[:,1].flatten().A[0], marker='o',s=90,c='red')
plt.show()

实验结果:

示例:利用PCA对半导体制造数据降维

具体代码:

#用平均值代替缺失值
def replaceNanWithMean():
    dataMat = loadData('Ch13/secom.data',' ')
    numFeat = shape(dataMat)[1]
    for i in range(numFeat):
        #计算非缺失值的平均值
        meanVal = mean(dataMat[nonzero(~isnan(dataMat[:,i].A))[0],i])
        #将缺失值置为平均值
        dataMat[nonzero(isnan(dataMat[:,i].A))[0],i] = meanVal
    return dataMat

dataMat = replaceNanWithMean()
meanVals = mean(dataMat)
meanRemoved = dataMat - meanVals

covMat = cov(meanRemoved,rowvar=0)
eigVal,eigVects = linalg.eig(mat(covMat))
print mat(eigVal)

可以看到许多特征值都是0,意味着这些特征都是其他特征的副本,并无实际意义

总结:

降维往往作为预处理的步骤,在数据应用于算法之前清洗数据,去除数据中的噪音,使得机器学习任务更加精确

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值