11 月 28 日,身负 7 条人命,潜逃 23 年的“蛇蝎女魔”劳某枝在厦门自己工作的商场被捕。 11 月 27 日,厦门警方通过大数据研判发现,一名疑似潜逃人员劳某的女子出现在厦门某商场附近。警方将抓取到的嫌疑人照片与逃犯 20 年前的面部图片面部进行特征匹配,相似度高达 97.33% 。此结果促使警方快速展开伏击行动,于 28 日正式将嫌疑人逮捕。
大数据抓逃犯的新闻近几年已屡见不鲜,最知名的当属张学友演唱会上陆续抓捕 60 人的神记录。公安大数据能够屡立战功的主要原因是其汇集多个行业社会数据,将 “ 人、车、场、住、行 ” 五大感知要素以及网络实名应用等多种实时监测数据,将警情分析、治安质态、人口数据、重点人员追踪等信息灵活展示出来,提供实时、直观、整合的信息,为快速、精准制定决策提供支持。
支撑这类庞大的大数据架构能够快速做出结果研判的基础是一个典型的分布式对象存储架构。当我们在交管所、银行等营业厅办理业务,酒店办理住宿、上网信息登记时,为了鉴别身份及遵从行业法规要求,业务系统会将我们的头像特征和笔记签名等信息以图片和视频的形式保存在后台存储系统中,同时在公共区域的安防监控设备数量也在大量增加,抓拍、录制的图片、视频也需要根据需求上传到公安大数据系统。伴随着人口的快速增长、数据采集终端数量的增加、图片 / 视频等对象文件的清晰度越来越高、法规要求保留年限更长,业务后台存储系统所需要存储的容量从 TB 到 PB 级、数量从百万到百亿级,呈现爆炸式增长,传统存储架构扩展性差,已经很难应对这样的趋势,这对需要在任一地点实时调取相关影像资料的业务系统来说是巨大的挑战,因此能够实现容量和性能弹性扩展,区域与中央互备,快速检索分类影像文件的分布式对象存储(软件定义存储)系统成为当前形势下的刚需。
对于侦破案件,每一分钟都非常重要,如果因为非结构化数据(图片、视频等)处理性能不足造成研判结果经过几个小时才能得出,很有可能错过了抓捕嫌疑人的最佳时间。分布式存储架构的好处就在于:
第一, 各行业系统的数据分别独立于本地或云端存储,并定期与公安大数据平台数据同步,实现了数据的多中心容灾,数据可就近访问;
第二, 对于容量从 TB 到 PB 级、数量从百万到百亿级的存储变化趋势,分布式存储基于通用 X86 服务器硬件构建,可以充分利旧、弹性扩容、动态增减;
第三, 分布式存储利用哈希计算,即使上亿级文件也可以实现快速的检索访问,有效帮助大数据应用对底层存储数据的调用和分析。
不仅如此,国内一些软件定义存储厂商也在对象存储方案的基础上不断优化数据处理的效率,提升数据价值。以杉岩数据为例 ,作为国内领先的软件定义存储厂商,在其海量对象存储产品( MOS )的最新版本中提供了 AI 服务后处理框架支持,可以轻松应用各类 AI 服务能力到客户的业务系统,如人脸智能识别技术,可以自动地将存入业务系统的人脸图片中的面部特征提取出来,并分类打上标签,提高人脸检索的效率。这一功能目前可广泛应用到交通管理、公安治理、金融服务等诸多场景。
伴随着信息技术的发展,各行各业的业务处理效率得到大幅提升。存储作为数字信息化转型的基础,值得各行业 IT 运维人员以及管理者的重视,只有打好基础,才能更快发展。