(DecisionTreeRegressor)决策树回归预测实例-max_depth 学习笔记

本文详细介绍了使用 DecisionTreeRegressor 进行回归预测时,`max_depth` 参数的重要性和影响。通过实例分析,展示了不同 `max_depth` 值如何改变模型复杂度与预测精度,探讨了在实际应用中如何选择合适的树深度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
%matplotlib inline

n = 100
x = np.random.rand(n)*6 - 3
x.sort()
y = np.sin(x) + np.random.rand(n) + 0.06
x = x.reshape(-1,1)
y = y.reshape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值