Hyperopt工具包 贝叶斯优化

这篇博客介绍了Hyperopt工具包在机器学习中的应用,详细阐述了贝叶斯优化的四个步骤:自定义目标、指定参数空间、选择采样算法和记录实验结果。通过示例展示了贝叶斯优化过程,包括最佳损失值和迭代趋势,并对比了随机优化的结果。最后,讨论了如何选择更合适的参数空间来提升优化效果。
摘要由CSDN通过智能技术生成

Hyperopt工具包

一. Bayesian Optimization 贝叶斯优化四大步骤

  1. Objective 目标函数
  2. Domain space 指定参数空间
  3. Hyperparameter optimizationfunction 可选择的采样算法,随机或者贝叶斯优化
  4. Trials 记录结果的保存
1. Objective 自定义目标, 这里得有一个最小值
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

def objective(x):
    f = np.poly1d([1, -3, -28, 29, 12, -22, 99]) 
    # np.poly1d生成多项式, 如np.poly1d([2,3,4])生成2x^2 + 3x + 4
    return f(x) * 0.05

x = np.linspace(-5, 7, 10000)
y = objective(x)

miny = min(y)
minx = x[np.argmin(y)]

plt.figure(figsize = (8, 6))
plt.style.use('fivethirtyeight')
plt.title('Objective Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.vlines(minx, min(y)-50, max(y), linestyles='--', colors='r')
plt.plot(x, y)
print('Minimum of %0.4f occurs at %0.4f' % (miny, minx))

Minimum of -394.7324 occurs at 5.4266
在这里插入图片描述

2. Domain 参数取值范围
from hyperopt import hp
space = hp.uniform('x', -5, 7)

from hyperopt.pyll.stochastic import sample
samples = []
for _ in range(10000):
    samples.append(sample(space))

plt.hist(samples, bins = 20, edgecolor = 'black')
plt.xlabel('x'); plt.ylabel('Frequency'); plt.title('Domain Space')

在这里插入图片描述

3. 选择采样算法

Hyperparameter Optimization Algorithm 随机或者贝叶斯优化

from hyperopt import rand, tpe
tpe_algo = tpe.sugge
Hyperopt是一个Python库,用于使用贝叶斯优化算法来调整机器学习模型的超参数。下面是Hyperopt在调整XGBoost超参数时的步骤: 1. 定义参数空间:首先需要定义需要调整的超参数以及其取值范围。例如,可以使用Uniform分布来定义连续型参数的取值范围,使用qUniform分布来定义整数型参数的取值范围。 2. 定义评估函数:评估函数是用来计算模型的性能指标的,例如准确率、AUC等。在每次迭代中,Hyperopt会根据当前超参数的取值调用评估函数来计算模型的性能指标。 3. 定义搜索算法:Hyperopt支持多种搜索算法,例如随机搜索、贝叶斯优化等。在这里,我们选择使用贝叶斯优化算法。 4. 运行优化器:定义好参数空间、评估函数和搜索算法后,就可以运行Hyperopt的优化器来寻找最优超参数组合了。在每次迭代中,Hyperopt会根据当前的超参数取值计算模型的性能指标,并根据贝叶斯优化算法来更新超参数的取值,直到达到预设的最大迭代次数或收敛为止。 下面是一个使用Hyperopt优化XGBoost超参数的示例代码: ```python from hyperopt import fmin, tpe, hp from sklearn.datasets import load_boston from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import xgboost as xgb # 加载数据集 data = load_boston() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) # 定义参数空间 space = { 'max_depth': hp.quniform('max_depth', 3, 10, 1), 'learning_rate': hp.loguniform('learning_rate', -5, 0), 'n_estimators': hp.quniform('n_estimators', 50, 200, 1), 'min_child_weight': hp.quniform('min_child_weight', 1, 10, 1), 'subsample': hp.uniform('subsample', 0.5, 1), 'gamma': hp.uniform('gamma', 0, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1), 'reg_alpha': hp.uniform('reg_alpha', 0, 1), 'reg_lambda': hp.uniform('reg_lambda', 0, 1), } # 定义评估函数 def objective(params): model = xgb.XGBRegressor(**params) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) return mse # 定义搜索算法 algo = tpe.suggest # 运行优化器 best = fmin(fn=objective, space=space, algo=algo, max_evals=100) print(best) ``` 在这个示例中,我们使用Hyperopt库来优化XGBoost回归模型的超参数。我们首先加载了Boston房价数据集,并将其分成训练集和测试集。然后,我们定义了需要调整的超参数以及其取值范围,并定义了评估函数。最后,我们选择使用tpe.suggest算法来搜索最优超参数,并将最优超参数打印出来。 需要注意的是,由于贝叶斯优化算法是一种启发式算法,因此在每次运行时得到的最优超参数可能会有所不同。因此,为了确保得到的结果是稳定的,通常需要运行多次优化器并取平均值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值