DeepSeek的推理速度优化方法是什么

DeepSeek为了优化推理速度,主要采取了以下策略:

  • 扩大规模推理:
    • 提示词工程: 设计更有效的提示词,诱导模型生成更准确的结果,例如使用“逐步思考”之类的提示。
    • 投票和搜索策略: 生成多个答案,通过投票选择最佳答案,或者使用束搜索等方法来优化生成结果。
  • 多Token预测(MTP): 模型一次预测多个Token,提高训练效率,推理速度随之提升。
  • 低秩压缩: 对模型内部的矩阵进行压缩,减少计算过程中的内存占用,从而提升推理速度。
  • FP8混合精度训练框架: 使用精度更低的FP8格式进行计算,减少计算量,加快推理速度。
  • 多粒度语义编码层: 通过特殊设计的网络结构,提升模型处理复杂语义的能力,间接提升推理效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Rocky

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值