Qwen-VL部署实操

Qwen-VL 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型的特点包括:

  • 强大的性能:在四大类多模态任务的标准英文测评中(Zero-shot Captioning/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;
  • 多语言对话模型:天然支持英文、中文等多语言对话,端到端支持图片里中英双语的长文本识别;
  • 多图交错对话:支持多图输入和比较,指定图片问答,多图文学创作等;
  • 首个支持中文开放域定位的通用模型:通过中文开放域语言表达进行检测框标注;
  • 细粒度识别和理解:相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。

第一、环境准备

  1. 需要的工具网站
    1. anaconda的官方脚本库
    2. HF-Mirror 国内的Hugging Face的镜像
    3. 魔搭社区 中内的模型发布平台
  2. conda的源的国内镜像
    1. 清华的源,个人感觉稳定,阿里的不能访问原因未知。
conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
 conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
 conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
 conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
 conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
 conda config --set show_channel_urls yes

第二、安装环境

  1. anaconda的安装,建议安装最新的,旧的有可能会有兼容问题。下载后运行指令。
    curl -o https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
    
    #下载完成后,运行指令
    
    bash Anaconda3-2024.06-1-Linux-x86_64.sh
    
  2. 创建conda的环境
    conda create -n qwenvl python=3.10
  3. 激活创建的环境
    conda activate qwenvl
  4.  安装运行环境, 这里的指令,请去 PyTorch 这里自己去配置。根据自己的环境。
    conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia
  5.  第4步如果卡死,显示 Solving environment: \ 一直不动的情况。请删除conda,重新安装我是先安装的2019版本,改最新版后就可以了。其它解决方案:
    conda config --remove channels conda-forge
    conda config --add channels conda-forge
    conda config --set channel_priority strict
    

      然后再重新安装。

  6. 创建模型源码放置的位置,然后后下载源码
    git clone https://github.com/QwenLM/Qwen-VL.git
    
    #下载完成后,进入源码的目录
    cd Qwen-VL
    
  7. 安装模型的依赖 
    pip install -r requirements.txt
    pip install -r requirements_openai_api.txt
    pip install -r requirements_web_demo.txt
  8. 运行demo的脚本 
    python web_demo_mm.py
  9. 运行会直接下载模型,也可以直接先下载到本地,再运行上面的脚本,但要改脚本里的模型位置。
  10. 推理请使用GPU,使用CPU推理,5分钟才出答案。我的配置CPU:2*6330,内存:128G,显卡A5000.
### Qwen-VL 本地化部署教程 #### 准备工作 为了顺利进行Qwen-VL的本地化部署,需先准备好开发环境并下载必要的资源。 确保安装Git工具以便于从仓库获取项目文件[^1]。通过命令`git clone https://www.modelscope.cn/qwen/Qwen-VL-Chat.git`克隆Qwen-VL-Chat项目的源码到本地机器上;进入该目录下继续操作,即执行`cd Qwen-VL-Chat`切换至对应的文件夹内。 接着再次利用Git指令拉取核心组件——Qwen-VL本身,具体做法为运行`git clone https://github.com/QwenLM/Qwen-VL.git`完成复制动作,并随后进入到新创建的Qwen-VL文件夹中准备后续配置工作,这一步骤同样依赖于`cd Qwen-VL`来实现路径转换。 #### 构建Python虚拟环境 考虑到不同版本间的兼容性问题以及避免可能存在的库冲突情况,在此建议新建一个独立的Conda环境专门用于支持此次部署任务。可以借助如下两条语句快速建立名为qwenvl的新环境并将Python解释器设定为3.11版次: ```bash conda create -n qwenvl python=3.11 -y source activate qwenvl ``` 上述脚本中的第一条负责定义新的计算空间及其基础属性设置,而第二条则激活这个刚刚构建好的环境使之成为当前会话下的默认选项,从而保障之后所有的包管理活动都在这里边发生而不影响系统的其他部分。 #### 配置pip镜像加速 鉴于网络状况差异可能导致官方PyPI服务器响应缓慢甚至无法访问的情况存在,推荐调整pip客户端参数指向更稳定的国内阿里云Pypi镜像站作为替代方案之一。可以通过下面这两行配置更改全局索引URL和信任主机列表,以此提高软件包检索效率和服务稳定性: ```bash pip config set global.index-url http://mirrors.aliyun.com/pypi/simple pip config set install.trusted-host mirrors.aliyun.com ``` 这些改动使得pip能够在遇到外部连接困难时自动转向指定位置寻找所需的Python扩展模块和其他依赖项,进而加快整个安装流程的速度并减少失败几率。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值