半监督学习:MixMatch

MixMatch是一种半监督学习算法,利用Mixup数据增强技术和温度参数T对无标签数据进行处理,生成猜测标签。它在有标签和无标签数据上执行多次增强和Mixup操作,然后结合交叉熵和L2损失函数来训练模型。
摘要由CSDN通过智能技术生成

算法的整个流程还是比较清晰简单的,主要使用了Mixup这一数据增强,混合了标签数据和无标签数据。
流程步骤如下:
一、记batch size为B,标签样本为X,无标签样本为U,temperature为T,无标签样本数据增强的次数为K,在实验中,K设为2,这里的数据增强就是指普通的数据增强而不是mixup。

二、
对一个batch中的X进行一次数据增强,得到
在这里插入图片描述
对一个batch中的U进行K次数据增强,得到在这里插入图片描述

三、对所有增强的无标签数据进行预测,并对它们的预测求平均,再通过temperature进行sharpen,得到猜测标签在这里插入图片描述

在这里插入图片描述
四、
得到增强的有标签数据和它们对应的标签;
得到增强的无标签数据和它们对应的猜测标签。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值