【pytorch】ResNet中的BasicBlock与bottleneck

https://zhuanlan.zhihu.com/p/349717627

ResNet与残差块

深度卷积网络的瓶颈:
理论上,增加网络层数后,网络可以进行更加复杂的特征模式的提取,所以当模型更深时可以取得更好的结果。但VGG、GoogLeNet等网络单纯增加层数遇到了一些瓶颈:简单增加卷积层,训练误差不但没有降低,反而越来越高。在CIFAR-10、ImageNet等数据集上,单纯叠加3×3卷积,何恺明等[1]人发现,训练和测试误差都变大了。这主要是因为深层网络存在着梯度消失或者爆炸的问题,模型层数越多,越难训练。

残差块:

但是神经网络的ReLU激活函数恰恰不能保证“什么都不学习”。残差网络的初衷就是尽量让模型结构有“什么都不做”的能力,这样就不会因为网络层数的叠加导致梯度消失或爆炸。
在这里插入图片描述现有H(x) = F(x)+x, 只要F(x)=0,那么H(x)=x,H(x)就是恒等映射,也就是有了“什么都不做”的能力。ResNet基于这一思想提出了一种残差网络的结构,其中输入x可以传递到输出,传递的过程被称为ShortCut
同时,下图里有两个权重层,即F(x)部分。假如“什么都不学习”是最优的,或者说H(x)=x是最优的,那么理论上来说,F(x)学习到的目标值为0即可;如果H(x)=x不是最优,那么基于神经网络强大的学习能力,F(x)可以尽可能去拟合我们期望的值。
在这里插入图片描述

BasicBlock

ResNet中使用的一种网络结构,在resnet18和resnet34中使用了BasicBlock:
输入输出通道数均为64,残差基础块中两个3×3卷积层参数量是:
在这里插入图片描述

在这里插入图片描述

BasicBlock类中计算了残差,该类继承了nn.Module。

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

bottleNeck

ResNet-34核心部分均使用3×3卷积层,总层数相对没那么多,对于更深的网络,作者们提出了另一种残差基础块。(在resnet50、resnet101、resnet152使用了Bottlenect构造网络.)

Bottleneck Block中使用了1×1卷积层。如输入通道数为256,1×1卷积层会将通道数先降为64,经过3×3卷积层后,再将通道数升为256。1×1卷积层的优势是在更深的网络中,用较小的参数量处理通道数很大的输入。

Bottleneck Block中,输入输出通道数均为256,残差基础块中的参数量是:
在这里插入图片描述
BasicBlock比较,使用1×1卷积层,参数量减少了。当然,使用这样的设计,也是因为更深的网络对显存和算力都有更高的要求,在算力有限的情况下,深层网络中的残差基础块应该减少算力消耗。

在这里插入图片描述
代码:

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = conv1x1(planes, planes * self.expansion)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

  • 48
    点赞
  • 246
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
ResNet是一种卷积神经网络,它通过引入残差学习解决了网络退化的问题。当网络深度增加时,传统的网络准确度会饱和甚至下降,而ResNet通过shortcut的方法让信息跨层传播,从而解决了这个问题。具体来说,ResNet的shortcut连接允许被跨越的层拟合的是两层之间的残差。当残差为0时,shortcut连接就是恒等映射;当残差不为0时,就能在恒等映射的基础上补充学习残差。[1] 在PyTorch实现ResNet,可以使用ResidualBlock类来定义残差块。这个类包含了两个卷积层和两个批归一化层,以及一个可选的下采样层。在前向传播过程,输入通过卷积层和批归一化层后,与残差相加,然后再经过ReLU激活函数。[2] 为了进一步优化ResNet的性能,可以在网络引入bottleneck结构。这个结构可以减少参数量和计算量,但在较浅的网络可能会增加计算耗时。因此,bottleneck结构更适合用在更深的网络。此外,对于ResNet的预处理和图像变换,如果过于简单,可能会导致准确率过低。[3] 总结来说,PyTorchResNet是一种用于图像分类任务的卷积神经网络,通过残差学习和shortcut连接解决了网络退化的问题。可以使用ResidualBlock类来定义残差块,并可以引入bottleneck结构来进一步优化性能。在使用ResNet时,需要注意适当的预处理和图像变换,以提高准确率。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值