题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
题目分析
- 首先讲一下对二叉树几种遍历的记忆理解方法,主要是结点的序列位置不同。
- 前序遍历——排序方式为:node, node->left, node->right
- 中序遍历——排序方式为:node->left, node, node->right
- 后序遍历——排序方式为:node->left, node->right, node
- 根据前序遍历的特点,树的根结点一定在第一位;中序遍历的特点,根结点左边的为左子树,右边的为右子树。根据动态规划的思想,将问题又分为左子树和右子树的根结点查找,递归方式正好解决子问题求解。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
struct TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
if(pre.size()==0||vin.size()==0) return NULL;
return re(0,pre.size()-1,&pre,0,vin.size()-1,&vin);
}
struct TreeNode* re(int prei,int endi,vector<int> *pre,int prej,int endj,vector<int> *vin)
{
if(prei>endi||prej>endj) return NULL;
TreeNode* t = new TreeNode(pre->at(prei));
int j = prej;
while(pre->at(prei)!=vin->at(j)) ++j;
t->left = re(prei+1,j-prej+prei,pre,prej,j-1,vin);
t->right = re(j-prej+1+prei,endi,pre,j+1,endj,vin);
return t;
}
};