BERT: 面向语言理解的深度双向Transformer预训练

参考视频:

 BERT 论文逐段精读【论文精读】_哔哩哔哩_bilibili

背景

BERT算是NLP里程碑式工作!让语言模型预训练出圈!

使用预训练模型做特征表示的时候一般有两类策略:

1. 基于特征 feature based (Elmo)把学到的特征和输入一起放进去做一个很好的特征表达

2. 基于微调 fine-tuning (GPT) 

但是都用的是单向语言模型↑ 预测模型,所以限制了语言架构,比如说只能从左往右读

 Masked Language Model

为了接触限制,BERT用的是一个带掩码的语言模型(MLM)(Masked Language Model),随机选字元,盖住,预测盖住的字

看多模态模型的时候有提到过!↑

 next sentence prediction

在原文中随机取两个句子,让模型判断句子是否相邻

贡献

1. 说明双向信息的重要性

 2.假设有比较好的预训练模型就不用对特定任务做特定的模型改动了

主要就是把前人的结果拓展到深的双向的模型架构上

相关工作

1. Unsupervised Feature-based Approches

2. Unsupervised Fine-tuning Approaches(GPT)

3. 在有标号的数据上进行迁移学习 (Transfer Learning from Supervised Data)

方法

模型

本篇工作调整了L:Transformer模块的个数,H:隐藏层的个数以及A:自注意力头的个数

BERT 的总参数主要包括两个部分:

  1. 嵌入层(Embeddings)

  2. 多个 Transformer Block(包含多头自注意力和前馈层 MLP)

 

1️⃣ 嵌入层的参数

嵌入层包括:

  • Token Embeddings:词表大小 × 隐藏维度 H

  • Segment Embeddings(区分句子 A/B):2 × H

  • Position Embeddings:最大句长(一般是 512)× H

通常词表大小是 30,000~32,000,保守记作 V

所以嵌入层参数大约是:

Embedding 参数 ≈ V × H + 512 × H + 2 × H ≈ (V + 514) × H
 

2️⃣ Transformer Block 的参数

每个 Transformer Block 有两个主要模块:

🧠 (1) Multi-head Self Attention(多头自注意力)

这个模块包括三部分:Q、K、V的线性变换,以及输出层。

  • Q, K, V 每个是:H × H

  • 共有三个 → 3 × H × H

  • 输出层也有一个线性变换 → H × H

所以,一个注意力模块总共是

Attention Layer 参数 = 4 × H × H

🧠 (2) MLP 前馈网络

MLP由两个线性层组成:

  • 第一层:H → 4H → 参数:H × 4H

  • 第二层:4H → H → 参数:4H × H

MLP 参数 = 4 × H × H + 4 × H × H = 8 × H × H
 

一个Transformer Block 参数 = (4 + 8) × H^2 = 12 × H^2

Transformer层参数 = L × 12 × H^2
 

总参数 = Embedding 参数+Transformer层参数=  (V + 514) × H + L × 12 × H^2

输入和输出

输入:

序列(sequence):既可以是句子,也可是句子对

切词方法: WordPiece,节省参数

序列的第一个词永远是序列[CLS],因为bert希望它最后输出代表整个序列的一个信息

把两个句子合在一起的时候需要区分两个句子:

1)把每个句子后面放上特殊的词[SEP]

2) 学一个嵌入层

对每个词元进入BERT的向量表示,是词元本身的embedding,加句子embedding加position embedding

缺点:

与GPT(Improving Language Understanding by Generative Pre-Training)比,BERT用的是编码器,GPT用的是解码器。BERT做机器翻译、文本的摘要(生成类的任务)不好做。

写的不算全,后面看到后面补。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值