【论文解读】Med-BERT: 用于疾病预测的大规模结构化电子健康记录的预训练情境化嵌入

【论文解读】Med-BERT: 用于疾病预测的大规模结构化电子健康记录的预训练情境化嵌入

Med-BERT:pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction

Med-BERT

摘要:基于电子健康记录(EHR)的深度学习(DL)预测模型在许多临床任务中都表现出色。然而,这些模型通常需要大型训练队列来实现高精度,这阻碍了在训练数据有限的情况下采用基于DL的模型。最近,bidirectional encoder representations from transformers(BERT)和相关模型在自然语言处理领域取得了巨大的成功。在非常大的训练语料库上对BERT进行预训练会生成情境化嵌入,从而提高在较小数据集上训练的模型的性能。受BERT的启发,我们提出了Med BERT

### Medical BERT Model Applications in Healthcare NLP In the realm of healthcare natural language processing (NLP), various adaptations and extensions of the BERT model have been developed to cater specifically to medical data. These models leverage pre-trained architectures fine-tuned with domain-specific corpora, enhancing their performance on clinical text understanding tasks. #### Fine-Tuning for Specific Tasks Medical BERT variants such as Med-BERT are designed by incorporating extensive biomedical literature into training datasets[^3]. This approach allows these models to better comprehend terminologies unique to medicine, thereby improving accuracy when performing named entity recognition or relation extraction from electronic health records (EHR). #### Handling Longer Sequences Compared to standard implementations that limit input lengths at 512 tokens, some advanced versions like CPLLM-Llama2 can process up to 4096 tokens without additional training requirements. Such capabilities significantly expand applicability across diverse scenarios within hospitals where lengthy patient histories need summarizing or analyzing comprehensively. #### Integrating Structured Data Another significant advancement involves integrating structured information alongside unstructured textual inputs during inference time. By doing so, systems become capable not only of interpreting free-form notes but also correlating findings against standardized coding schemes used throughout healthcare institutions[^1]. ```python from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('microsoft/BiomedNLP-PubMedBERT') model = BertForSequenceClassification.from_pretrained('microsoft/BiomedNLP-PubMedBERT') text = "Patient has a history of hypertension." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits ``` This code snippet demonstrates how one might load and use a specialized PubMedBERT model for sequence classification tasks relevant to healthcare applications.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值