pytorch中使用 random.shuffle

本文探讨了使用Python标准库中的random.shuffle函数对列表进行随机打乱的有效性,并指出该函数不适用于PyTorch张量。介绍了如何利用torch.randperm()函数来实现张量的随机排列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. random.shuffle

来源于 random 包,主要是打乱序列中的元素作用。当要打乱的为序列时有效,但当要打乱的数据为pytorch中的张量的时候,就失效了

2. 代码

import torch
import random
x = torch.arange(10)
y = list(range(10))

print(f'x_before={x}')
random.shuffle(x)
print(f'x_random={x}')
print(f'y_before={y}')
random.shuffle(y)
print(f'y_random={y}')

3. 结果

x_before=tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # 张量:打乱前 
x_random=tensor([0, 1, 1, 0, 4, 5, 0, 4, 3, 1]) # 张量:打乱后 -> 失败
y_before=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]  # 列表:打乱前 
y_random=[6, 5, 9, 3, 4, 1, 8, 2, 0, 7]  # 列表:打乱后 -> 成功

4. 结论

在我们用标准的列表的时候,我们将列表用 random.shuffle 的时候,我们可以随机打乱数据 ;但是当我们打乱的对象是张量的时候,就失败了,大家注意避坑。

5. 随机生成打乱顺序的张量

torch.randperm()

  • 代码
import torch
x = torch.randperm(10) 
  • 结果
x = tensor([5, 0, 8, 7, 2, 1, 4, 6, 9, 3])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值