20. 克拉默法则,逆矩阵,体积

1. A − 1 A^{-1} A1的行列式

对于一个2X2的行列式来说,其逆矩阵的行列式表示如下:

  • C表示代数余子式
    ∣ a b c d ∣ − 1 = 1 a d − b c ∣ d − b − c a ∣ ; \begin{equation} \begin{vmatrix} a&b\\\\ c&d \end{vmatrix}^{-1}=\frac{1}{ad-bc}\begin{vmatrix} d&-b\\\\ -c&a \end{vmatrix}; \end{equation} acbd 1=adbc1 dcba ;

2. A − 1 = 1 d e t ( A ) C T A^{-1}=\frac{1}{det(A)}C^T A1=det(A)1CT

  • 我们要证明上述公式,我们对A,C 进行展开可得如下:
    A C T = d e t ( A ) \begin{equation} AC^T=det(A) \end{equation} ACT=det(A)

M = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋯ ⋮ a n 1 a n 2 ⋯ a n n ] [ C 11 C 21 ⋯ C n 1 C 12 C 22 ⋯ C n 2 ⋮ ⋮ ⋯ ⋮ C 1 n C 2 n ⋯ C n n ] \begin{equation} M=\begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\\\a_{21}&a_{22}&\cdots&a_{2n}\\\\ \vdots&\vdots&\cdots&\vdots&\\\\a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix}\begin{bmatrix} C_{11}&C_{21}&\cdots&C_{n1}\\\\C_{12}&C_{22}&\cdots&C_{n2}\\\\ \vdots&\vdots&\cdots&\vdots&\\\\C_{1n}&C_{2n}&\cdots&C_{nn} \end{bmatrix} \end{equation} M= a11a21an1a12a22an2a1na2nann C11C12C1nC21C22C2nCn1Cn2Cnn
M 11 = a 11 C 11 + a 12 C 12 + ⋯ + a n n C 1 n = d e t ( A ) \begin{equation} M_{11}=a_{11}C_{11}+a_{12}C_{12}+\dots+a_{nn}C_{1n}=det(A) \end{equation} M11=a11C11+a12C12++annC1n=det(A)
M 12 = a 11 C 21 + a 12 C 22 + ⋯ + a n n C 2 n = 0 \begin{equation} M_{12}=a_{11}C_{21}+a_{12}C_{22}+\dots+a_{nn}C_{2n}=0 \end{equation} M12=a11C21+a12C22++annC2n=0

  • 所以可得矩阵M就是每个斜对角上都是det(A)的矩阵,当前行乘以其他行的代数余子式的和为;只需要将制定的行换成a所在的行,那么就得出结果为0;
    M = A C T = d e t ( A ) ⇒ A − 1 = 1 d e t ( A ) C T \begin{equation} M=AC^T=det(A) \Rightarrow A^{-1}=\frac{1}{det(A)}C^T \end{equation} M=ACT=det(A)A1=det(A)1CT
    3.克莱姆法则
  • 当A可逆的情况下
    A X = b ⇒ X = A − 1 b ⇒ X = 1 d e t ( A ) C T b \begin{equation} AX=b \Rightarrow X=A^{-1}b\Rightarrow X=\frac{1}{det(A)}C^Tb \end{equation} AX=bX=A1bX=det(A)1CTb
  • 整理可得
    X = 1 d e t ( A ) C T b \begin{equation} X=\frac{1}{det(A)}C^Tb \end{equation} X=det(A)1CTb

3. 求体积

我们用3X3矩阵A表示坐标上的边上的点,每一行表示一个边上的点坐标

A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \begin{equation} A=\begin{bmatrix} a_{11}&a_{12}&a_{13}\\\\a_{21}&a_{22}&a_{23}\\\\a_{31}&a_{32}&a_{33} \end{bmatrix} \end{equation} A= a11a21a31a12a22a32a13a23a33
A 1 = [ a 11 a 12 a 13 ] ; A 2 = [ a 21 a 22 a 23 ] ; A 3 = [ a 31 a 32 a 33 ] \begin{equation} A_1=\begin{bmatrix} a_{11}&a_{12}&a_{13} \end{bmatrix};A_2=\begin{bmatrix} a_{21}&a_{22}&a_{23}\end{bmatrix};A_3=\begin{bmatrix} a_{31}&a_{32}&a_{33} \end{bmatrix} \end{equation} A1=[a11a12a13];A2=[a21a22a23];A3=[a31a32a33]
在这里插入图片描述

  • 如图所示,长方体的体积 V = ∣ d e t ( A ) ∣ V=|det(A)| V=det(A);
  • 10
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值