20克拉默法则、逆矩阵、体积

本节是关于行列式的最后一课,主要包括按各方面:求逆矩阵、克莱姆法则和体积

求逆矩阵 A-1

早在之前,就已经了解过求解逆矩阵的方法:高斯-若尔当求逆法。高斯-若尔当求逆法对于数值计算无懈可击,但很难想象这是如何做到的,也许我们需要一个更直观的逆矩阵的代数表达式,这就用到了行列式的知识。
在这里插入图片描述
首先关注公式的分母,其为行列式的值,也许一般逆矩阵公式其中一部分正是1除以矩阵的行列式,这
一部分是合理的,因为只有当行列式的值不等于0时,矩阵才是可逆的。

实际上,公式右边这一块矩阵就是由代数余子式组成的,为代数余子式矩阵C的转置,我们一般称其为伴随矩阵,记为 CT。

假设一般地,矩阵 的逆矩阵公式为:
在这里插入图片描述
不会没看懂所以直接上图:
在这里插入图片描述

克莱姆法则

现在有了逆矩阵的计算公式,所以对Ax = b 现在有:
在这里插入图片描述
更进一步地,考虑x的分量xi:

在这里插入图片描述
其中矩阵Bi是向量b替代矩阵A的第i列所得到的新矩阵,这也即克莱姆法则。

在这里插入图片描述
在这里插入图片描述

行列式的几何意义 – 体积

3阶矩阵A的行列式的绝对值|det (A)| 等于以矩阵A行(列)向量为边所构成的平行六面体的体积。行列式的符号正负对应左手系和右手系。

先给出命题:对于3 X 3矩阵,其行列式的绝对值等于一个箱子的体积。

在这里插入图片描述
对于三阶单位矩阵I,其体积为det(I) = 1,此时这个箱子是一个单位立方体。这其实也印证了前面
学过的行列式性质1。

基于这一点,于是想:如果能够继续证明箱子体积具有行列式的三大基础性质,而三大基础性质定
义了行列式,那么箱子体积就一定等于行列式。这是一个非常巧妙的间接证明的方法。

接下来接着看体积是否具有行列式的性质2和3。
首先对于行列式性质2,交换两行并不会改变箱子的大小,同时行列式的绝对值也没有改变,性质2
得证。
在验证性质3之前,先再取正交矩阵Q为例来研究其体积与其行列式的关系。
显然3阶正交矩阵实际上所形成的箱子也是一个单位立方体,只不过略有旋转。既然如此,那么箱子的
体积显然是1。那么3阶正交矩阵是否其行列式的绝对值也为1呢?
在这里插入图片描述
与体积相等,符合命题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值