27. 复数矩阵,快速傅里叶转换

1. 复数矩阵

当矩阵A为实对称矩阵的时候,其特征值为实数,当特征值为复数的时候,其特征向量也就变成了复数向量,组成复数矩阵。傅里叶矩阵是目前最重要的复矩阵。也有关于傅里叶矩阵的快速傅里叶变换。通常对于一个n行n列的两个方阵来说,我们要进行两个方阵的相乘,按照常规思路来说需要进行 n 2 n^2 n2 次运算,但是我们经过快速傅里叶变换后,我们再重新相乘两个矩阵,其乘法运算需要 n log ⁡ 2 n n\log_2n nlog2n 次,远远小于原来的 n 2 n^2 n2 次运算。我们只是进行了简单的矩阵变换,但是对于矩阵乘法来说,大大降低了运算次数,大大提高了运算速度。简直太神奇了。

1.1 复数向量

当我们有一个向量 z 表示如下,根据定义可以求得其模|z|;
z = a + b i ⇒ ∣ z ∣ = a 2 + b 2 \begin{equation} z=a+bi \Rightarrow |z|=\sqrt{a^2+b^2} \end{equation} z=a+biz=a2+b2
我们现在需要用复数乘法的形式来求得向量的模,我们定义z的共轭复数为 z ˉ \bar{z} zˉ
z ˉ = a − b i ⇒ z ˉ T z = [ a − b i ] [ a b i ] = a 2 − b 2 i 2 = a 2 + b 2 \begin{equation} \bar{z}=a-bi \Rightarrow \bar{z}^Tz=\begin{bmatrix}a&-bi\end{bmatrix}\begin{bmatrix}a\\\\bi\end{bmatrix}=a^2-b^2i^2=a^2+b^2 \end{equation} zˉ=abizˉTz=[abi] abi =a2b2i2=a2+b2

  • 我们定义向量z为包含复数z,其共轭复数为 z ˉ \bar{z} zˉ
    z = [ a 1 + b 1 i a 2 + b 2 i ⋮ a n + b n i ] ; z ˉ T = z H = [ a 1 − b 1 i a 2 + b 2 i ⋯ a n − b n i ] ; \begin{equation} z=\begin{bmatrix} a_1+b_1i\\\\ a_2+b_2i\\\\ \vdots\\\\ a_n+b_ni \end{bmatrix};\bar{z}^T=z^H=\begin{bmatrix} a_1-b_1i& a_2+b_2i& \cdots &a_n-b_ni \end{bmatrix}; \end{equation} z= a1+b1ia2+b2ian+bni ;zˉT=zH=[a1b1ia2+b2ianbni];
    z H z = a 1 2 + b 1 2 + ⋯ + a n 2 + b n 2 = ∣ z ∣ 2 \begin{equation} z^Hz=a_1^2+b_1^2+\cdots+a_n^2+b_n^2=|z|^2 \end{equation} zHz=a12+b12++an2+bn2=z2
  • 假设我们有一个向量z=(1 , i),求其模长|z|
    z H z = [ 1 − i ] [ 1 i ] = 1 − i 2 = 1 + 1 = 2 ⇒ ∣ z ∣ = 2 \begin{equation} z^Hz=\begin{bmatrix}1&-i\end{bmatrix}\begin{bmatrix}1\\\\i\end{bmatrix}=1-i^2=1+1=2\Rightarrow |z|=\sqrt{2} \end{equation} zHz=[1i] 1i =1i2=1+1=2z=2
  • 实数的内积计算
    < x , y > = x T y \begin{equation} <x,y>=x^Ty \end{equation} <x,y>=xTy
  • 复数的内积计算
    < x , y > = x H y \begin{equation} <x,y>=x^Hy \end{equation} <x,y>=xHy
  • 复数情况下的对称矩阵举例:
    A H = A = [ 2 3 + i 3 − i 5 ] ⇒ A = 厄米特矩阵 \begin{equation} A^H=A=\begin{bmatrix}2&3+i\\\\3-i&5\end{bmatrix}\Rightarrow A =厄米特矩阵 \end{equation} AH=A= 23i3+i5 A=厄米特矩阵
  • 复数矩阵的情况下的正交:
    q i H q j = { 0 , i ≠ j 1. i = j , ∣ ∣ q i ∣ ∣ = 1 \begin{equation} q_i^Hq_j=\left\{ \begin{array}{ll} 0, &i \neq j \\ 1.&i=j\\ \end{array}, \quad ||q_i||=1 \right. \end{equation} qiHqj={0,1.i=ji=j,∣∣qi∣∣=1

1.2 复数正交矩阵Q

  • 复数矩阵Q含有单位正交复向量:
    Q = [ q 1 q 2 ⋯ q n ] , Q H = [ q 1 H q 2 H ⋯ q n H ] , Q H Q = I \begin{equation} Q=\begin{bmatrix}q_1&q_2&\cdots&q_n\end{bmatrix},Q^H=\begin{bmatrix}q_1^H&q_2^H&\cdots&q_n^H\end{bmatrix},Q^HQ=I \end{equation} Q=[q1q2qn],QH=[q1Hq2HqnH],QHQ=I

2. 酉矩阵

假设矩阵A有单位长度的列向量 q i q_i qi,并且 q i H q j = 0 , A H A = I q_i^Hq_j=0,A^HA=I qiHqj=0AHA=I,那额就称矩阵A为酉矩阵。

2.1 n阶傅里叶矩阵

F n = 1 n [ 1 1 1 ⋯ 1 1 w w 2 ⋯ w n − 1 1 w 2 w 4 ⋯ w 2 ( n − 1 ) ⋮ ⋮ ⋮ ⋯ ⋮ 1 w n − 1 w 2 ( n − 1 ) ⋯ w ( n − 1 ) 2 ] ; ( F n ) i j = w i j , i , j = 0 , 1 , . . . , n − 1 ; \begin{equation} F_n=\frac{1}{\sqrt{n}}\begin{bmatrix} 1&1&1&\cdots&1\\\\ 1&w&w^2&\cdots&w^{n-1}\\\\ 1&w^2&w^4&\cdots&w^{2(n-1)}\\\\ \vdots&\vdots&\vdots&\cdots&\vdots\\\\ 1&w^{n-1}&w^{2(n-1)}&\cdots&w^{(n-1)^2} \end{bmatrix};(F_n)_{ij}=w^{ij},i,j=0,1,...,n-1; \end{equation} Fn=n 1 11111ww2wn11w2w4w2(n1)1wn1w2(n1)w(n1)2 ;(Fn)ij=wij,i,j=0,1,...,n1;

  • w相当于是在复数平面上,将一个单位圆,角度为 2 π 2\pi 2π,分成n份,每一个 w = e i 2 π n w=e^{i\frac{2\pi}{n}} w=ein2π
    w n = 1 ⇒ w = e i 2 π n ; \begin{equation} w^n=1\Rightarrow w=e^{i\frac{2\pi}{n}}; \end{equation} wn=1w=ein2π;
  • F 4 F_4 F4的4阶傅里叶矩阵
    当n=4时,可以得到 w = e i 2 π 4 = i w=e^{i\frac{2\pi}{4}}=i w=ei42π=i,所以可得 F 4 F_4 F4
    F 4 = 1 2 [ 1 1 1 1 1 w w 2 w 3 1 w 2 w 4 w 6 1 w 3 w 6 w 9 ] = 1 2 [ 1 1 1 1 1 i i 2 i 3 1 i 2 i 4 i 6 1 i 3 i 6 i 9 ] = 1 2 [ 1 1 1 1 1 i − 1 − i 1 − 1 1 − 1 1 − i − 1 i ] \begin{equation} F_4=\frac{1}{2}\begin{bmatrix} 1&1&1&1\\\\ 1&w&w^2&w^{3}\\\\ 1&w^2&w^4&w^{6}\\\\ 1&w^{3}&w^{6}&w^{9} \end{bmatrix}=\frac{1}{2}\begin{bmatrix} 1&1&1&1\\\\ 1&i&i^2&i^{3}\\\\ 1&i^2&i^4&i^{6}\\\\ 1&i^{3}&i^{6}&i^{9} \end{bmatrix}=\frac{1}{2}\begin{bmatrix} 1&1&1&1\\\\ 1&i&-1&-i\\\\ 1&-1&1&-1\\\\ 1&-i&-1&i \end{bmatrix} \end{equation} F4=21 11111ww2w31w2w4w61w3w6w9 =21 11111ii2i31i2i4i61i3i6i9 =21 11111i1i11111i1i
    F 4 H F 4 = I ⇒ F 4 − 1 = F 4 H \begin{equation} F_4^HF_4= I\Rightarrow F_4^{-1}=F_4^H \end{equation} F4HF4=IF41=F4H

2.2 快速傅里叶变换

  • 太复杂了,加个链接吧
    https://zhuanlan.zhihu.com/p/347091298
    后期再添加进来
  • 18
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值