线性代数之——复数矩阵

为了完整地展示线性代数,我们必须包含复数。即使矩阵是实的,特征值和特征向量也经常会是复数。

1. 虚数回顾

虚数由实部和虚部组成,虚数相加时实部和实部相加,虚部和虚部相加,虚数相乘时则利用 i 2 = − 1 i^2=-1 i2=1

在虚平面,虚数 3 + 2 i 3+2i 3+2i 是位于坐标 ( 3 , 2 ) (3, 2) (3,2) 的一个点。复数 z = a + b i z=a+bi z=a+bi 的共轭为 z ˉ = z ∗ = a − b i \bar z=z^*=a-bi zˉ=z=abi

在极坐标下,复数则可以写作模长和极角的形式。

两个复数相乘是模长相乘,极角相加。

( r e i θ ) n = r n e i n θ (re^{i\theta})^n=r^ne^{in\theta} (reiθ)n=rneinθ

2. 厄米特(Hermitian)矩阵和酉(Unitary)矩阵

这部分的重点可以用一句话来介绍:当你对一个复数向量或者矩阵进行转置时,同时对它们取共轭。

为什么要这样做呢?一个理由是复数向量长度的特殊性。针对实向量,其长度的平方为 x 1 2 + ⋯ + x n 2 x_1^2+\cdots+x_n^2 x12++xn2,但复数向量长度的平方并不是 z 1 2 + ⋯ + z n 2 z_1^2+\cdots+z_n^2 z12++zn2。比如 z = ( 1 , i ) z=(1, i) z=(1,i) 长度的平方并不是 1 2 + i 2 = 0 1^2+i^2=0 12+i2=0,而应该是 z z ˉ = 1 2 + ∣ i 2 ∣ = 2 z\bar z=1^2+|i^2|=2 zzˉ=12+i2=2

我们定义一个新符号, z ˉ T = z H \bar z^T=z^H zˉT=zH,来表示向量的共轭转置,这个符号也可以应用到矩阵中去。

同时,我们也要对向量的内积定义进行一下扩展,但内积为零仍然表明正交。

这时候,向量的顺序就变得重要了。

v H u = v ˉ 1 u 1 + ⋯ + v ˉ n u n = ( u H v ) ∗ \boldsymbol v^H\boldsymbol u=\bar v_1u_1+\cdots+\bar v_nu_n=(\boldsymbol u^H\boldsymbol v)^* vHu=vˉ1u1++vˉnun=(uHv)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y6Kmou3i-1575007209937)(https://upload-images.jianshu.io/upload_images/11895466-c64644ff7415abe8.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)]

一个厄米特矩阵满足 A H = A A^H=A AH=A,每一个实对称矩阵都是厄米特的,因为实数的共轭还是它本身。

如果 A H = A A^H=A AH=A z \boldsymbol z z 是任意向量,那么 z H A z \boldsymbol z^HA\boldsymbol z zHAz 是实数。

( z H A z ) H = z H A H z = z H A z (z^HAz)^H=z^HA^Hz=z^HAz (zHAz)H=zHAHz=zHAz

来自对角线上的两项都是实数,而来自非对角线上的两项互为共轭,相加之后也为实数。

厄米特矩阵的每个特征值都是实数。

A z = λ z → z H A z = λ z H z A\boldsymbol z=\lambda \boldsymbol z \to \boldsymbol z^HA\boldsymbol z=\lambda \boldsymbol z^H \boldsymbol z Az=λzzHAz=λzHz

上式左边为实数, z H z \boldsymbol z^H\boldsymbol z zHz 是长度的平方,是正实数,所以特征值也必须为实数。

厄米特矩阵对应于不同特征值的特征向量是正交的。

A z = λ z → y H A z = λ y H z (1) \tag{1}A\boldsymbol z=\lambda \boldsymbol z \to \boldsymbol y^HA\boldsymbol z=\lambda \boldsymbol y^H\boldsymbol z Az=λzyHAz=λyHz(1)

A y = β y → z ( A y ) H = z ( β y ) H → y H A z = β y H z (2) \tag{2}A\boldsymbol y=\beta \boldsymbol y \to \boldsymbol z(A\boldsymbol y)^H=\boldsymbol z(\beta \boldsymbol y)^H \to \boldsymbol y^HA\boldsymbol z=\beta \boldsymbol y^H\boldsymbol z Ay=βyz(Ay)H=z(βy)HyHAz=βyHz(2)

比较 (1) 式和 (2) 式可得,两式左边相等,所以右边应该也相等。又由于两个特征值不一样,所以有 y H z = 0 y^H\boldsymbol z=0 yHz=0,两个特征向量正交。

酉矩阵是一个有着标准正交列的方阵。

任意有着标准正交列的矩阵满足 U H U = I U^HU=I UHU=I,如果它还是一个方阵,那么有 U H = U − 1 U^H=U^{-1} UH=U1

一个酉矩阵乘以任意向量,向量的长度保持不变。

z H U H U z = z H z \boldsymbol z^HU^HU\boldsymbol z=\boldsymbol z^H\boldsymbol z zHUHUz=zHz

而且,酉矩阵的所有特征值的绝对值都为 1。

最后,我们来总结一下实数和虚数向量以及矩阵之间的一些概念迁移。

获取更多精彩,请关注「seniusen」!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值