复变函数论3-复变函数的积分2-柯西积分定理1:柯西积分定理【若f在复平面上某单连通区域内解析,则①沿该区域内任意可求长闭合曲线(不必简单)进行的路径积分都为零;②路径积分只与起&终点有关,路径无关】

本文详细介绍了复变函数的柯西积分定理,包括定理的陈述、证明和相关例子。通过柯西积分定理,展示了在单连通区域内解析函数的积分特性,以及积分与路径无关的性质。同时,讨论了黎曼和古尔萨的证明方法,并推导出积分与路径无关的推论。
摘要由CSDN通过智能技术生成

例 3.1
C C C 表示连接点 a a a b b b 的任一曲线, 试证
(1) ∫ C   d z = b − a \int_{C} \mathrm{~d} z=b-a C dz=ba.

(2) ∫ C z   d z = 1 2 ( b 2 − a 2 ) \int_{C} z \mathrm{~d} z=\cfrac{1}{2}\left(b^{2}-a^{2}\right) Cz dz=21(b2a2).


(1) 因 f ( z ) = 1 , S n = ∑ k = 1 n ( z k − z k − 1 ) = b − a f(z)=1, S_{n}=\sum_{k=1}^{n}\left(z_{k}-z_{k-1}\right)=b-a f(z)=1,Sn=k=1n(zkzk1)=ba,故

lim ⁡ n → ∞ max ⁡ ∣ Δ z k ∣ → 0 S n = b − a ,  即  ∫ C   d z = b − a . \lim \limits_{\substack{n \rightarrow \infty \\ \max \left|\Delta z_{k}\right| \rightarrow 0}} S_{n}=b-a, \text { 即 } \int_{C} \mathrm{~d} z=b-a . nmaxΔzk0limSn=ba,  C dz=ba.

(2) 因 f ( z ) = z f(z)=z f(z)=z, 选 ζ k = z k − 1 \zeta_{k}=z_{k-1} ζk=zk1, 则得

Σ 1 = ∑ k = 1 n z k − 1 ( z k − z k − 1 ) , \Sigma_{1}=\sum_{k=1}^{n} z_{k-1}\left(z_{k}-z_{k-1}\right), Σ1=k=1nzk1(zkzk1),

但我们又可选 ζ k = z k \zeta_{k}=z_{k} ζk=zk, 则得

Σ 2 = ∑ k = 1 n z k ( z k − z k − 1 ) , \Sigma_{2}=\sum_{k=1}^{n} z_{k}\left(z_{k}-z_{k-1}\right), Σ2=k=1nzk(zkzk1),

由定理 3.1 可知积分 ∫ C z   d z \int_{C} z \mathrm{~d} z Cz dz 存在, 因而 S n S_{n} Sn的极限存在, 且应与 Σ 1 \Sigma_{1} Σ1 Σ 2 \Sigma_{2} Σ2 的极限相等, 从而应与 1 2 ( Σ 1 + Σ 2 ) \cfrac{1}{2}\left(\Sigma_{1}+\Sigma_{2}\right) 21(Σ1+Σ2) 的极限相等. 令

1 2 ( Σ 1 + Σ 2 ) = 1 2 ∑ k = 1 n ( z k 2 − z k − 1 2 ) = 1 2 ( b 2 − a 2 ) , \cfrac{1}{2}\left(\Sigma_{1}+\Sigma_{2}\right)=\cfrac{1}{2} \sum_{k=1}^{n}\left(z_{k}^{2}-z_{k-1}^{2}\right)=\cfrac{1}{2}\left(b^{2}-a^{2}\right), 21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值