早在2010年,数据科学就变得非常兴盛,而那时摩尔定律似乎正在走“下坡路”,另外非常欣喜的一点,CPU的速度之快已经可以做到果断支持人工智能与机器学习的部分需求;不过随着时间的推移,数据发展突飞猛进,但相对而言CPU的发展速度并没有“与时俱进”,有关这个难题,如今凭借RAPIDS,英伟达可以自豪地说,终于可以将深度学习的能力高效拓展到其他领域。
这不,在不久之前刚刚落幕的2018 GTC China大会上,少数行业媒体一同采访了英伟达解决方案架构与工程团队副总裁Marc Hamilton,深入探讨了RAPIDS开源GPU加速平台。
“RAPIDS可以在任何英伟达的GPU上运行,当然最佳模式是数据和与用于业务的GPU有很好的契合。”Marc Hamilton表示。
谈及具体的加速实现过程,他补充道,最底层主要通过对于CUDA的编程,加速其实具备不同方式。
一种方式就是在CUDA上对软件进行重新编程;第二种方式是使用CUDA软件库、cuML及机器学习的软件库,用来加速XGBOOST,放眼现在的软件开发者,前面两种加速方式都已经被使用过了;第三种加速方式被称为软件应用层面的加速。
助力高效加速,数据科学家使用RAPIDS更希望自己的工作做的快一点;重要的一点,并不需要耗费精力去学习新的软件,使用自身已有的软件就可以完成加速过程,开源的力量不禁令人赞叹。