Abstract
最先进的物体检测网络依靠区域提议算法来推测物体的位置。SPPnet [1]和Fast R-CNN [2]等研究已经减少了这些检测网络的运行时间,使得区域提议计算成为一个瓶颈。在这项工作中,我们引入了一个区域提议网络(RPN),该网络与检测网络共享全图像卷积特征,从而使近乎成本的区域提议成为可能。 RPN是一个完全卷积网络,可以同时预测每个位置的对象边界和对象分数。 RPN经过端到端的训练,生成高质量的区域提案,由Fast R-CNN用于检测。我们将RPN和Fast R-CNN通过共享卷积特征进一步合并为一个单一的网络 —— 使用最近流行的具有“关注”机制的神经网络术语,RPN组件告诉统一网络在哪里寻找(目标)。对于非常深的VGG-16模型[3],我们的检测系统在GPU上的帧速率为5fps(包括所有步骤),同时在PASCAL VOC 2007,2012上实现了最先进的目标检测精度,