论文翻译:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN是一种基于深度学习的目标检测框架,通过引入区域提议网络(RPN)解决了传统检测网络的运行效率问题。RPN与检测网络共享全图像卷积特征,实现快速的区域提议生成。该系统在保持高精度的同时,使用VGG-16模型在GPU上达到了5fps的检测速度,并在PASCAL VOC和MS COCO数据集上表现出顶级性能。此外,Faster R-CNN在ILSVRC和COCO 2015竞赛中占据主导地位,其相关代码已被开源。
摘要由CSDN通过智能技术生成

来源:CVPR

Abstract

最先进的物体检测网络依靠区域提议算法来推测物体的位置。SPPnet [1]和Fast R-CNN [2]等研究已经减少了这些检测网络的运行时间,使得区域提议计算成为一个瓶颈。在这项工作中,我们引入了一个区域提议网络(RPN),该网络与检测网络共享全图像卷积特征,从而使近乎成本的区域提议成为可能。 RPN是一个完全卷积网络,可以同时预测每个位置的对象边界和对象分数。 RPN经过端到端的训练,生成高质量的区域提案,由Fast R-CNN用于检测。我们将RPN和Fast R-CNN通过共享卷积特征进一步合并为一个单一的网络 —— 使用最近流行的具有“关注”机制的神经网络术语,RPN组件告诉统一网络在哪里寻找(目标)。对于非常深的VGG-16模型[3],我们的检测系统在GPU上的帧速率为5fps(包括所有步骤),同时在PASCAL VOC 2007,2012上实现了最先进的目标检测精度,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值