论文笔记| Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Author

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun
这里写图片描述
Shaoqing Ren

Abstract

In this work , it introduces a Region Proposal Network(RPN) that shares full-image convolutional features with the detection net work, thus enabling nearly cost-free region proposals.An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R CNN for detection. We further merge RPN and Fast RCNN into a single net work by sharing their convolutional features, the RPN component tells the unified network where to look.

1 Introduction

Now, proposals are the test-time computational bottleneck in state-of-the-art detection systems.
The RPN is thus a kind of fully convolutional network and can be trained end to end specifically for the task for generating detection proposals.
RPNs are designed to efficiently predict region proposals with a wide range of scales and aspect rations.
our scheme can be thought of as pyramid of regression referrences, which avoids enumerating images or filters of multipe scales or aspect ratios.
To unify RPNs with Fast R-CNN object detection neet works, we propose a training scheme that alternates between fine-tuning for the region proposal task and then fine-tuning for object detection, while keeping the proposals fixed.
The frameworks of RPN and Faster Rcnn have been adopted and generalized to other methods, such as 3D object detection, part-based detction,instance segmentation and image captioning.

#fcn
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.
#3D object detection
S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object
detection in rgb-d images,” arXiv:1511.02300, 2015.

2.1 object proposals

J. Hosang, R. Benenson, and B. Schiele, “How good are detection
proposals, really?” in British Machine Vision Conference
(BMVC), 2014.
 J. Hosang, R. Benenson, P. Doll´ar, and B. Schiele, “What makes
for effective detection proposals?” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2015.
N. Chavali, H. Agrawal, A. Mahendru, and D. Batra,
“Object-Proposal Evaluation Protocol is ’Gameable’,” arXiv:
1505.05836, 2015.

deep networks for object detection

Multibox does not share features between the proposal and detection networks. concurrent with our work, the deepmask method is developed for learning segmentation proposal.

3 Faster r-cnn

faster r-cnn=RPN+detector=fast r-cnn + rpn
这里写图片描述

3.1 RPN

RPN takes an image of any size as input and outputs a set of rectangular object proposals, each with an objectness score.

To generate region proposals , we slide a small network over the convolutional feture map , this small network takes as input an nxn (3x3 here, but the receptive field is large171 or 228) spatial window of the input convolutional feature map.
Each sliding window is mapped to a lower-dimmensional feature. then is fed into two sibling fullyconnected layer.
Note that because the mini-network operates in a sliding-windo fashion, the fully-connected layers are shared across all spatial locations.

3.1.1 Anchors

At each sliding-window location, we simulataneously predict multiple region proposals,
这里写图片描述
An anchor is centered at the sliding window, and is associated with a scale and apect ratio(fig.3 left).

3.1.1.1 Translation-invariant anchors

这里写图片描述
这里写图片描述

3.1.1.2 Multi-scale Anchors as Regression Refrence

这里写图片描述

3.1.2 Loss Function

For training RPNs, we assign a binary class label (of being an object or not )to each ancher. we assign a positive label to two kinds of anchors:
1. the achor with the highest IoU overlop with a groound-truth box
2. IoU >0.7
negative label <0.3 IoU
loss function:
这里写图片描述
i is the index of an ancor
two terms are normalized by Ncls and Nreg, and weight by a balancing parameter λ
这里写图片描述
bounding-box regression is performed on features pooled from arbitrarily size RoIs, and the regression weights are shared by all region sizes,. In our formulation, the features used for regression are of the same spatial size(3x3) on the feature maps. To account for varying sizes, a set f k boundign box regressors are learned . each regressor is responsible forone sacle and one aspect ration, and the k regressors do not share weights.
As such , it is still possible to predict boxes of various sizes even though the features are of a fixed size scale, thanks to the design of anchors.

3.1.3 Training RPNs

We randomly sample 256 anchors in an image to compute the loss function of a mini-batch, where the sampled positive and negative anchors anchors have a ratio of up to 1:1.
initialize new layer mean 0, standard deviation 0.01 Gaussian distribution.

3.2 Sharing Features for RPN and Fast R-cnn

Three ways for training network with features share:
1. alternating training
这里写图片描述
2. approximate joint training
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
3. Non-approximate jiont training

J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation
via multi-task network cascades,” arXiv:1512.04412, 2015

3.3 Implementation Details

Some RPN proposals highly overlap with each other. To reduce redundancy , we adopt non-maximun suppression on the proposal regions based on their cls scores.We fix the IoU threshold for NMS at 0.7 , which leaves us about 2000 proposal regions per image. as we will show, NMS does not harm the ultimate detection accuracy , but substantially reduces the number of proposals. We train fast r-cnn using 2000 rpn proposals ,but evaluate different numbers of proposals at test time.

4 Experiments

这里写图片描述
这里写图片描述
这里写图片描述
One stage detection vs.Two stage proposal + detection
这里写图片描述

5 conclusion

BTW:
http://www.w2bc.com/article/127290
这里写图片描述
这里写图片描述
这里写图片描述

### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值