线性___非线性

本文探讨了机器学习中线性与非线性的概念,重点在于模型的非线性。线性模型如逻辑回归(LR)通过对输出进行非线性映射实现非线性,而非线性模型如支持向量机(SVM)和多层感知器(MLP)则通过特征映射或层间非线性激活函数引入非线性。非线性引入的两种主要方式包括特征间的非线性关系和输出的非线性变换。提升模型非线性能力的方法包括特征组合、核技巧和输出层的非线性映射。
摘要由CSDN通过智能技术生成

 

 


https://blog.csdn.net/lipengcn/article/details/80724088

浅谈机器学习中的非线性

关于机器学习中的线性和非线性,有两个聚焦点,一个是问题,一个是模型。
问题的线性非线性,指的是样本点的分布,是否能在输入空间上用线性超平面区分。
模型的线性非线性,是这次讨论的重点。

模型的非线性

基础数学说,线性指变量之间的数值关系,即满足成比例。因此,变量之间的多项式、指数等关系都算是非线性。
网上有一批文章认为,ML 模型的线性非线性,指模型参数之间的关系,即决策函数 y=w_1*x_1^2 + w_2*x_2^2 是线性模型,而 y=w_1^2*x_1 + w_2^2*x_2 是非线性模型。
我认为这是不对的。((((存在疑问???))))

ML 模型的的线性非线性,应该指特征变量之间的关系,即决策函数 y=w_1*x_1^2 + w_2*x_2^2 是非线性模型,而 y=w_1^2*x_1 + w_2^2*x_2 是线性模型。
实际上,并不会出现后一种决策函数,貌似没有哪种模型学到的决策函数会在参数上进行非线性变换,那么这种变换并不会在 loss function 的优化过程中起到作用,最终对学习到的 model 并不会产生影响,因此,后一种模型和 y=w_1*x_1 + w_2*x_2 并无二致。

谈谈 LR、SVM 和 MLP 中的非线性

LR,准确来说应该是广义线性模型。其决策函数仍是线性的 y=w_1*x_1 + w_2*x_2,只不过在输出时,套用 sigmoid 函数,得到了分类的置信度。如果从最后的决策函数 f(x) = 1 / (1+exp(w_1*x_1 + w_2*x_2)) 来看,确实特征变量 x_1 和 x_2 之间由于 sigmoid 函数作用,呈现了非线性关系,但这种非线性并不是直接作用在输入特征空间的,而是对输出空间进行的非线性映射

SVM,有线性和非线性版本。线性SVM,其模型本身就是在寻求一个超平面,只是策略是找到间隔最大的那个超平面。而非线性SVM,虽说在特征空间上仍是分类超平面,但是先采用了核技巧从输入空间向特征空间进行了非线性映射。

MLP,其嵌套函数的特点就反映了,它的非线性更像 LR ,即从每层来看,输入并没有进行 SVM 那样的非线性特征变换,但在输出时进行了非线性映射,那么多层重叠,也就实现了特征的非线性交叉。

ML 中的非线性

通过上面分析,就能看出,ML 模型的非线性,指的是特征之间的非线性关系。这种非线性的引入,目前来看有两种思路:

  • 一种是对输入特征进行非线性映射,如 SVM 的输入空间到特征空间的非线性高维映射
  • 一种是对输出结果进行非线性映射,如 LR 的输出加持 sigmoid

MLP 的非线性本质同 后一种,但由于多层作用,也相当于组合了两种思路。

回过头再来看看,问题的非线性通常需要求助于模型的非线性。但有些模型的非线性程度可能不够,不足以解决复杂的非线性问题。
MLP 不用担心,SVM 虽然不知道进行了怎样的特征映射,但内积回旋的非线性也是很强的,貌似 LR 就差了点。
LR 的非线性并没有直接对特征进行变换,非线性能力就弱了点。比如,原本距离决策面远的样本点,只是相对决策面的绝对距离经 sigmoid 变换被拉到了 0-1 之间,但样本点们相对决策面的相对距离(顺序)并没有改变,离得远的样本点在这种变换后还是远。

那么如果需要提高模型的非线性能力,该如何做呢?从上面的总结就可以看出来:

  • 要么看看对输出进行非线性映射如何
  • 要么看看能不能再对输入特征进行了非线性变换

以后一种来说,

  • 进行特征组合,即使是多样式组合也产生了非线性,sklearn 中的 PolynomialFeature 类就是讲原本的 d 维扩展到了 C_(q+d)^d 维
  • 引入核技巧,将低维输入映射到高维空间,产生非线性
  • 引入新的维度,比如对连续特征离散化,甚至是离散后进行组合

最后一种算是核技巧的本质,核技巧的非线性产生的根由是因为 n 维空间映射到 m>n 维,即增加表征的维度带来的非线性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值