一、LSUN数据集
LSUN数据集
是一个大规模图像数据集,出自论文《LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop》。这个数据集基于人类在循环中进行深度学习的构建,包含10个场景类别
和20个对象类别
,共计约100万张
标记图像。相比ImageNet,LSUN数据集的标注更为丰富,不仅标注了图片中的主要物体,还进行了场景标注。
LSUN数据集
的挑战赛主要集中于场景理解,包括场景对象检索、室外场景分割、RGB-D 3D物体检测和显著性检测等。每个类别的图像以LMDB格式存储,并且数据库被压缩。此外,LSUN数据集借助深度学习自动标注图片,这在一定程度上提高了标注的准确性和效率。
LSUN官网:
http://dl.yf.io/lsun/
主要提供迅雷网盘资源,部分子集提供百度网盘资源,若资源失效,可私信。
1. 对象类别
2.场景类别
二、FFHQ数据集
FFHQ数据集全称Flickr-Faces-Hight-Quality,是英伟达为生成对抗网络(GAN)设计的基准,并也用于StyleGAN的训练数据集中。该数据集于2019年开源,是一个高质量的人脸图像数据集,包含了70,000张PNG格式的高清人脸图像,每张图像的分辨率均为1024×1024。这些图像在年龄、种族和图像背景上丰富多样且差异明显,同时在人脸属性上也具有很多变化,如不同的年龄、性别、种族、肤色、表情、脸型、发型和人脸姿态等。此外,数据集中还包括了各种配饰,如普通眼镜、太阳镜、帽子、发饰及围巾等。
FFHQ数据集的图像来源于Flickr,所有图像均经过许可才下载,并使用了dlib进行人脸对齐和裁剪。在数据处理过程中,算法还移除了非真实人脸图像,如雕像、画作及照片等。该数据集主要存储于谷歌云盘,并且每张图像都带有多种属性标签,这些标签可用于训练和评估计算机视觉系统。
在机器学习和计算机视觉研究中,FFHQ数据集提供了宝贵的资源。前60,000张图像通常用于训练,而剩余的10,000张则用于验证。与CelebA-HQ数据集相比,FFHQ数据集更大、更具多样性,因此更适合用于高质量人脸生成任务。
FFHQ1024数据集
:链接:https://pan.baidu.com/s/1HSpDKECnZINb3nevqoFSBg?pwd=yuq9
提取码:yuq9