LSUN数据集、FFHQ数据集 迅雷网盘、百度网盘分享(所有子集)

一、LSUN数据集

LSUN数据集是一个大规模图像数据集,出自论文《LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop》。这个数据集基于人类在循环中进行深度学习的构建,包含10个场景类别20个对象类别,共计约100万张标记图像。相比ImageNet,LSUN数据集的标注更为丰富,不仅标注了图片中的主要物体,还进行了场景标注。


LSUN数据集的挑战赛主要集中于场景理解,包括场景对象检索、室外场景分割、RGB-D 3D物体检测和显著性检测等。每个类别的图像以LMDB格式存储,并且数据库被压缩。此外,LSUN数据集借助深度学习自动标注图片,这在一定程度上提高了标注的准确性和效率。


LSUN官网: http://dl.yf.io/lsun/


主要提供迅雷网盘资源,部分子集提供百度网盘资源,若资源失效,可私信。

1. 对象类别

子集名大小迅雷网盘百度网盘
airplane.zip34Ghttps://pan.xunlei.com/s/VNsMpyqDcNGFd1zskghCM-Q7A1?pwd=3n7i-
bicycle.zip129Ghttps://pan.xunlei.com/s/VNsMrXSh-AYMjRnAmbyR6SBUA1?pwd=effm-
bird.zip65Ghttps://pan.xunlei.com/s/VNsMrjpFVn9B2fIYL67L0I8sA1?pwd=q2u9#-
boat.zip86Ghttps://pan.xunlei.com/s/VNsMrr13PO2w6n1GBFocLAslA1?pwd=4jz5#-
bottle.zip64Ghttps://pan.xunlei.com/s/VNsMrzEwrPTHJC5aD0_g9DJtA1?pwd=g9xa#-
bus.zip24Ghttps://pan.xunlei.com/s/VNsMs7Df4fM0LGE6EXRjhXknA1?pwd=x2js#-
car.zip173Ghttps://pan.xunlei.com/s/VNsMsX1-fP2Z9jHm0D4yUKvsA1?pwd=v7ts#-
cat.zip42Ghttps://pan.xunlei.com/s/VNsMtk_5jHUhhtpwQeQVXgCqA1?pwd=qws7#点击保存
chair.zip116Ghttps://pan.xunlei.com/s/VNsMsSQ3-GGhhUofPw4r8uxnA1?pwd=qmcg#-
cow.zip15Ghttps://pan.xunlei.com/s/VNsMsGHhdZNnO7SyesW4Ztf9A1?pwd=wygn#-
dining_table.zip28Ghttps://pan.xunlei.com/s/VNsMslMNfP2Z9jHm0D4yUQRTA1?pwd=wkys#-
dog.zip145Ghttps://pan.xunlei.com/s/VNsMsgZ-Fb9C-ezM4N20WFcKA1?pwd=2k5d#-
horse.zip69Ghttps://pan.xunlei.com/s/VNsMssDVEbTKO8yCCDYNIbjrA1?pwd=qhg9#-
motorbike.zip42Ghttps://pan.xunlei.com/s/VNsMswF7T-u63eBevxxnLL9kA1?pwd=sjhs#-
person.zip477G处理中-
potted_plant.zip43Ghttps://pan.xunlei.com/s/VNsMt2CHW1U0SNN-00sJAXIpA1?pwd=vc99#-
sheep.zip18Ghttps://pan.xunlei.com/s/VNsMtCKVrOa2taJAKquJMU69A1?pwd=assg#-
sofa.zip56Ghttps://pan.xunlei.com/s/VNsMtGP2EyH0or7Y0iqkZSAlA1?pwd=xxmb#-
train.zip43Ghttps://pan.xunlei.com/s/VNsMtKM-T-u63eBevxxnLd5mA1?pwd=jw6k#-
tv-monitor.zip46Ghttps://pan.xunlei.com/s/VNsMtOIi-Ad39A1PWiWuX5QZA1?pwd=nzcj#-

2.场景类别

子集名大小迅雷网盘百度网盘
bedroom_train_lmdb.zip43Ghttps://pan.xunlei.com/s/VNsMvpc10mMVz408-K2shU7HA1?pwd=bspt#点击保存
bedroom_val_lmdb.zip4Mhttps://pan.xunlei.com/s/VNsMvtfIIr08EasS6gspQ_DgA1?pwd=9f8w#点击保存
bridge_train_lmdb.zip15Ghttps://pan.xunlei.com/s/VNsMvw4pofDXGR1puNVR9UEKA1?pwd=rjit#点击保存
bridge_val_lmdb.zip6Mhttps://pan.xunlei.com/s/VNsMvz7oWunvYYjhqBnySr_jA1?pwd=q5ex#点击保存
categories.txt110https://pan.xunlei.com/s/VNsMx9Riiu44x9s7itfEU0K1A1?pwd=g29z#-
church_outdoor_train_lmdb.zip2Ghttps://pan.xunlei.com/s/VNsMw1MDofDXGR1puNVR9WF8A1?pwd=nunq#点击保存
church_outdoor_val_lmdb.zip6Mhttps://pan.xunlei.com/s/VNsMw8V5-hvqBJgi1qtr6wJYA1?pwd=d39n#点击保存
classroom_train_lmdb.zip3Ghttps://pan.xunlei.com/s/VNsMwC9LcVhkZYojgo4yh22GA1?pwd=b4cp#点击保存
classroom_val_lmdb.zip6Mhttps://pan.xunlei.com/s/VNsMwEzluYR5M8H0sGGg_H_gA1?pwd=xtnr#点击保存
conference_room_train_lmdb.zip4Ghttps://pan.xunlei.com/s/VNsMwIYWuYR5M8H0sGGg_IUNA1?pwd=dx9i#点击保存
conference_room_val_lmdb.zip5Mhttps://pan.xunlei.com/s/VNsMwNGNiu44x9s7itfETUl4A1?pwd=p7d4#点击保存
dining_room_train_lmdb.zip11Ghttps://pan.xunlei.com/s/VNsMwQOPpY9faJUoxvG07XrKA1?pwd=t2g4#点击保存
dining_room_val_lmdb.zip5Mhttps://pan.xunlei.com/s/VNsMwTFW-hvqBJgi1qtr72uKA1?pwd=wmhv#点击保存
kitchen_train_lmdb.zip33Ghttps://pan.xunlei.com/s/VNsMwVfNmgpBpp-T2w4KrfAjA1?pwd=kz4b#点击保存
kitchen_val_lmdb.zip5Mhttps://pan.xunlei.com/s/VNsMwZu4q2dzBmFZcz87WmweA1?pwd=5fc5#点击保存
living_room_train_lmdb.zip21Ghttps://pan.xunlei.com/s/VNsMwctMgUrzF8slPQVL0QmnA1?pwd=2ywb#点击保存
living_room_val_lmdb.zip5Mhttps://pan.xunlei.com/s/VNsMwf651laPGRtbkIRLX0AoA1?pwd=5mcn#点击保存
restaurant_train_lmdb.zip13Ghttps://pan.xunlei.com/s/VNsMwi-Ew4uUuHGOE-ziTwx9A1?pwd=cxec#点击保存
restaurant_val_lmdb.zip6Mhttps://pan.xunlei.com/s/VNsMwnJknYFDIQjHDLQ73jcdA1?pwd=fe3c#点击保存
test_lmdb.zip172Mhttps://pan.xunlei.com/s/VNsMwuvHmgpBpp-T2w4Krmm-A1?pwd=ka2m#-
tower_train_lmdb.zip11Ghttps://pan.xunlei.com/s/VNsMwxvOmgpBpp-T2w4Krn_CA1?pwd=4739#点击保存
tower_val_lmdb.zip5Mhttps://pan.xunlei.com/s/VNsMx-CsLjFWCauPJFcoL2ZcA1?pwd=2rkk#点击保存

二、FFHQ数据集

FFHQ数据集全称Flickr-Faces-Hight-Quality,是英伟达为生成对抗网络(GAN)设计的基准,并也用于StyleGAN的训练数据集中。该数据集于2019年开源,是一个高质量的人脸图像数据集,包含了70,000张PNG格式的高清人脸图像,每张图像的分辨率均为1024×1024。这些图像在年龄、种族和图像背景上丰富多样且差异明显,同时在人脸属性上也具有很多变化,如不同的年龄、性别、种族、肤色、表情、脸型、发型和人脸姿态等。此外,数据集中还包括了各种配饰,如普通眼镜、太阳镜、帽子、发饰及围巾等。

FFHQ数据集的图像来源于Flickr,所有图像均经过许可才下载,并使用了dlib进行人脸对齐和裁剪。在数据处理过程中,算法还移除了非真实人脸图像,如雕像、画作及照片等。该数据集主要存储于谷歌云盘,并且每张图像都带有多种属性标签,这些标签可用于训练和评估计算机视觉系统。

在机器学习和计算机视觉研究中,FFHQ数据集提供了宝贵的资源。前60,000张图像通常用于训练,而剩余的10,000张则用于验证。与CelebA-HQ数据集相比,FFHQ数据集更大、更具多样性,因此更适合用于高质量人脸生成任务。

FFHQ1024数据集:链接:https://pan.baidu.com/s/1HSpDKECnZINb3nevqoFSBg?pwd=yuq9
提取码:yuq9

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值