RAPIDS AI 加速制造业预测性维护效率

根据国际自动化协会(ISA)报告,每年有5%的工厂生产因机时间而受到损失。在另一种情况下,各行各业的制造商在全球范围内放弃了大约647亿美元,而相应的部分在生产中则接近13万亿美元。当前的挑战是预测这些机器的维护需求,以最大限度地减少机时间、降低运营成本并优化维护计划。

这种问题在提供 Desktop as a Service (DaaS) 服务的公司中尤为普遍,这些公司租用计算设备用于商业用途,并需要满足严格的 SLAs 要求。DaaS 行业的价值高达 3 亿美元,预计将增长 12%。

在本文中,我们将讨论一个案例:我们构建了一个预测模型,以根据各种操作参数、传感器数据和历史维护记录来估计计算资产的剩余使用寿命(RUL)。

LatentView Analytics

LatentView Analytics 支持多个 DaaS 客户端,并通过商业智能、数据分析和科学、数据工程、机器学习和 AI 等领域的高级数据分析咨询服务,提供运营复杂的服务。

我们发现,企业组织可以使用预测性维护算法在设备故障发生之前进行检测,从而节省宝贵的停机时间。数据科学的进步使得预测和预测在企业中得到广泛应用。与常规或基于时间的预防性维护等标准操作程序相比,预测性维护能够提前解决问题。

LatentView 构建了一种名为 PULSE 的解决方案,这是一种先进的预测性维护解决方案,旨在重新定义制造效率。通过连接支持 IoT 的资产,PULSE 使用先进的分析来提供实时见解,使您的团队能够采取前瞻性的措施。

PULSE 有助于减少和消除计划外机时间、过高的维护成本和运营低效。你可以精确预测机器故障,消除机时间麻烦,并提高制造效率。

Diagram shows the PULSE model workflow and data stack, starting from data sources and moving through data ingestion frameworks, messaging, processing, security, governance, monitoring, profiling, access, and then data consumption in the form of reports, dashboards, files, applications, and relational databases.

图 1.LatentView ML 工作流程

剩余使用寿命用例

一家领先的计算设备制造客户希望实施有效的预防性维护。数百万台租赁计算设备发生部件故障,导致客户流失和不满足。如果能够及早发现故障并提出维修和更换建议,将减少客户流失,提高客户忠诚度和盈利率。

为了解决客户的痛点,我们决定使用预测性维护模型来预测每台机器的RUL。该模型有助于确定每台机器在需要维修或更换之前的运行时间,从而消除机器交付给客户时的部件故障。

为构建这种适用于计算设备的预测性维护模型,我们首先需要聚合来自关键热感、电池、风扇、磁盘和 CPU 传感器的数据,这些传感器测量了机器的温度、周期和多个方面。然后,将这些数据聚合并应用于预测模型中。

以下各节将介绍我们的初步尝试、学习,以及GPU加速的数据科学如何帮助我们加快实施速度,从而为客户成功交付项目。

面临的挑战

在我们首次尝试为客户构建概念验证时,我们在使用预测性维护平台产品 PULSE 时面临着许多挑战,这些挑战主要集中在计算瓶颈和延长周期处理时间上。这主要是因为进行有效预测所需的大量数据和源源不断的数据流,反过来又吸引了越来越多的节点和图像来满足计算需求。

虽然这些挑战是问题的整体性,但我们主要希望工具和库与解决方案集成,以便更好地扩展到动态操作条件,该解决方案应尽可能缩短查看结果所需的时间,并优化 TCO(包括基础设施成本)。

我们遇到了以下一些问题:

  • 大型实时数据集
  • 稀疏和噪声传感器数据
  • 多元关系
  • 漫长的时间轴
  • 成本方面
  • 推理挑战

大型实时数据集

由于在多个地点部署了数百万台机器,且每台机器上都有多个传感器,并且每隔 5 分钟就会收集一次数据,因此每天会收集超过 1TB 的数据。这使得数据处理和清洁成为最耗时和繁琐的任务,因为我们花了近 60% 的时间准备数据。

使用最新训练数据对模型进行持续迭代训练、数据清洁、添加新功能,以及试验多个模型以最终确定生产模型,还可以增加总工作量、时间和计算能力。

稀疏和噪声传感器数据

在制造或 DaaS 环境中,从每台机器的传感器数据通常稀疏(大多数值为 0 或为空),以不规则的时间间隔收集,并且容易产生噪音。

多元关系

在该用例的单个模型中必须考虑的传感器类型的数量造成了复杂的多元情况,从而增加了计算需求。

漫长的时间轴

创建准确的预测需要包含大量示例的大型数据集来训练模型。

随着大数据用例的不断增长,CPU 性能成为主要瓶颈,这些限制增加了周期时间和成本,并在我们的 PoC 结果中变得显而易见。

成本方面

必须对基础设施进行扩展以缩短周期时间。大规模 CPU 基础设施会产生巨大的成本,从而降低数据驱动型企业的投资回报。

推理挑战

部署大规模预测过程十分困难。通常需要大量软件重构,有时甚至需要重写针对用例和团队之间的传递进行优化的代码。在这种情况下,insight 生成可能会大幅延迟。

采用 RAPIDS 的加速预测性维护解决方案

PULSE旨在使用PyData生态系统在CPU基础设施上运行。随着 RAPIDS 的推出,我们希望通过RAPIDS为客户提供一个加

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值