我把deepseek等大模型接入了微信公众号,打造个人AI助手

前言

最近deepseek大模型可是火出了圈,给国产大模型公司点赞。于是乎去deepseek试了一下效果,奈何太多人使用了,问两句来一句 “服务器繁忙,请稍后再试”,体验感实在太差了。

作为程序员,怎么能忍受?于是乎去寻找deepseek供应商,对比了下常用的供应商,比如阿里百炼的通义、字节火山的豆包、腾讯的混元、fireworks、together等等。发现其中还真有不少好用且稳定的供应商。

于是萌生了接入微信公众号,自己独享,速度快的起飞。直接在微信上使用,岂不美滋滋,说干就干。

cow项目

chatgpt-on-wechat(简称CoW),项目地址如下:cow

CoW开源项目,支持将deepseek、OpenAI、通义、豆包、文心一言等大模型接入到我们的办公工具上面,包括但不限于微信公众号、飞书、钉钉等

1、提前准备

  1. 你需要登录deepseek官网(或者其他提供商)获取你自己的专属API-KEYS

  2. 登录公众号后台,“在左侧菜单选择 "设置与开发 - 基本配置 - 服务器配置"获取你专属的url、token等信息

以上信息请提前准备好

2、配置cow项目

  1. 克隆项目到自己服务器上面,可以使用linux部署,也可以使用docker部署

  2. pip3 install -r requirements.txt (请使用python3.8+版本)

  3. 打开config.json配置文件,把刚才准备好的密钥填进来

{
  "channel_type": "wechatmp",
  "model": "你的大模型,可以是deepseek,也可以是qwen等等",
  "open_ai_api_key": "apikey",
  "open_ai_api_base": "https://api.deepseek.com/v1",
  "single_chat_prefix": [""],
  "single_chat_reply_prefix": "",

  "wechatmp_app_id": "wx6e**********0b5",
  "wechatmp_app_secret": "a204ce**********a12007a5",
  "wechatmp_token": "保持和公众号一致即可",
  "wechatmp_aes_key": "Hego**************2VeCc8875",
  "wechatmp_port": 8080,

  "clear_memory_commands": ["#清除记忆"],
  "conversation_max_tokens": 1000,
  "expires_in_seconds": 3600,
  "character_desc": "你是基于大语言模型的AI智能助手,旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。",
  "temperature": 0.8,
  "subscribe_msg": "感谢您的关注!\n程序员博博公众号已接入DeepSeek-V3、阿里qwen-max等模型,可以自由对话。\n受微信限制,较长的输出会先回复一句【正在思考中】,等待片刻后发送任意文字即可获取输出。如需清楚记忆,请回复:#清除记忆",
  "use_linkai": false
}

  1. 然后使用python3 app.py, 启动项目即可。

  2. 如果以上都没问题,那么恭喜你,你的公众号现在已经拥有deepseek大模型的能力,愉快的玩耍吧。

  3. 如果遇到了问题,请参考cow的官方文档

3、最终效果

这里我尝试了一下deepseek、qwen、文心一言等。发觉qwen是比较稳定快速的,所以最终我接入了阿里的qwen大模型

最后

最后,微信公众号接入了deepseek等大模型,非常的好用,可以成为自己的AI小助手,有问题,直接在微信上问他即可,非常的方便,专属于你的小助手。

也希望大家有条件可以尝试接入一下,接入的过程中肯定会遇到各种各样的奇葩问题,但大家一一解决的过程就是成长,我差不多利用下班时间2天搞定了。

文章转载自:程序员博博

原文链接:我把deepseek等大模型接入了微信公众号,打造个人AI助手 - 程序员博博 - 博客园

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

### 将DeepSeek集成至微信公众号后台 为了将DeepSeek集成到微信公众号后台,可以借鉴企业微信应用中Webhook配置的经验并结合DeepSeek的能力。具体来说: 在企业环境中,当拥有Webhook地址之后,可以通过特定接口让应用程序之间传递信息[^1]。对于微信公众号而言,开发者同样能够利用其服务器端口对接收的消息进行处理,并通过调用自定义的服务(如由DeepSeek提供支持的大规模预训练模型服务)来进行智能化响应。 考虑到DeepSeek具备多种先进的对话和服务机器人功能[^2],以及它能够在本地环境内被安装的事实[^3],理论上讲,只要遵循微信公众平台所提供的开发指南完成必要的认证流程和技术准备工作,就可以把运行于内部网络中的DeepSeek实例连接起来,从而实现在接收到用户提问时自动触发向该AI引擎发送请求获取答案的行为模式。 然而值得注意的是,目前官方并没有直接给出关于如何确切实施这一过程的具体指导文件;因此实际操作过程中可能需要依据现有资源灵活调整方案设计思路。通常情况下这涉及到以下几个方面的考量: - **安全性验证**:确保所有通信都经过安全加密传输,并且只有授权方才能访问敏感数据。 - **消息格式适配**:根据微信公众号所规定的输入输出结构来准备相应的JSON对象或其他形式的数据包。 - **错误处理机制**:建立有效的异常捕捉逻辑以便及时发现并解决问题,保障系统的稳定性和可靠性。 ```python import requests def send_to_deepseek(message): url = "http://your.deepseek.server/api/v1/chat" headers = {"Content-Type": "application/json"} payload = { "message": message, # Add other parameters as needed based on the API documentation of your DeepSeek instance. } response = requests.post(url, json=payload, headers=headers) return response.json() ``` 此代码片段展示了如何使用Python脚本向假设存在的DeepSeek RESTful API提交聊天请求的一个简单例子。当然,在真实场景下还需要考虑更多细节问题,比如身份验证方式的选择、超时设置等参数优化措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值