Enhancing Diversity in Teacher-Student Networks via Asymmetric branches for Unsupervised reid论文解读

收录于WAVC2021
论文地址:https://openaccess.thecvf.com/content/WACV2021/papers/Chen_Enhancing_Diversity_in_Teacher-Student_Networks_via_Asymmetric_Branches_for_Unsupervised_WACV_2021_paper.pdf

出发点

M-T模型可以减小无监督reid任务中聚类的噪声,但是,teacher和student的自我集成容易让网络迅速收敛到一个局部最小值。因此,在网络中提出一个非对称结构:1、非对称分支能以不同方式提取特征,从而增强了在外观特征的多样性。2、提出了跨分支有监督学习,让一个分支获取另一个分支的监督信息,从而传递了不同的知识,增强了教师和学生网络之间的权重多样性。

introduction

1、指出基于聚类方法产生噪声原因:domain gap和聚类方法本身的缺陷

2、针对无监督reid问题转变为:①如何生成可靠标签;②如何处理带有噪声的标签

针对①,本文参考MMT方法产生硬标签和软标签;针对②,一个主流方法是paired network,如,co-teaching或MMT。然而,这些具有相同结构的成对模型很容易相互收敛并陷入局部最小值。当前的解决方法:co-teaching+、ATC和MMT,前两个通过选择不同训练样本或不同的初始化方法,MMT是利用不同数据增强,它们核心都是 让paired model保持divergence(具有差异性)

3、方法

对student和teacher网络中的最后一层,采用两个独立的分支,每个分支有不同的深度和池化方法,然后将两个分支结果拼接,优点:1、增加特征多样性;2、获得更好的硬聚类标签。同时,每个分支之间又可以做监督,提升了两个网络的差异性。

4、贡献

①把网络最后一层分成两个不对称分支,提升了硬标签的质量(本质上是特征的多样性得到提升)

②提出了一种新颖的解耦方法,该方法使非对称分支得到跨分支的监督,避免了成对师生网络中权重的相互收敛,提高了基于教师的软标签的质量

方法

非对称分支

1、多分支结构在有监督网络广泛应用,目的:让每个分支具有独立性,从而获得多样性的特征。

2、动机:用不同的分支获取不一样的特征。

在这里插入图片描述

3、优点:在源域用这种结构训练得到一定提升,证明它可以提升特征的多样性;在目标域效果则证明它可以提供更有效的聚类硬标签。

Asymmetric Branched Mean Teaching
源域训练

两个分支的结果都做三元和交叉熵, 共4个损失

目标域训练

1、采用DBSCAN聚类方法,聚类特征为teacher网络的两个分支的拼接结果

2、对于UDA采用的是两个域共同输入;对于完全无监督,只输入目标域。

在这里插入图片描述

3、对每个分支的分类器,用聚类结果的聚类中心归一化特征来初始化分类器(就是自己代码中的copy_),给了个名字——动态分类器,因为每次聚类的类别数目不同。

4、提出基于teacher的跨分支软标签——把teacher的不同分支结果作为student不同分支结果的软标签。

MT结构的耦合问题

1、作者认为自己的方法能在每次训练都让student和teacher学到更多不一样的特征,从而防止两个网络易于互相耦合的情况。

2、实验证明:计算了MMT结构的teacher网络之间(teacher的两个分支之间)特征欧氏距离,以及teacher和student之间的距离,距离越大,说明差异性/多样性越大。

在这里插入图片描述

个人理解

1、它本质上还是只用了全局特征,只是把最后一层改成两个全局特征分支,然后在不同分支之间做损失

2、它的出发点包装的很好,可以学习

3、它画了三个图:M-T结构、MMT结构、自己的结构,用于说明MT结构的问题——耦合问题,两个网络容易收敛到对方,因此需要探究多样化问题。

在这里插入图片描述

随着物联网系统的不断发展,机器到机器的通信变得越来越重要。MQTT作为一种轻量级的通信协议,已经被广泛应用于物联网系统中。而Python作为一种灵活且强大的编程语言,可以用来增强MQTT-based的机器到机器通信。 首先,Python提供了丰富的库和工具,可以帮助开发人员更加便捷地使用MQTT协议。通过使用Python的MQTT客户端库,开发人员可以快速地建立起MQTT连接,并且方便地进行消息的发布和订阅操作。同时,Python还提供了各种各样的扩展库,可以用来处理与MQTT相关的数据和事件。 其次,Python具有较为友好的语法和良好的可读性,这使得开发人员可以更加高效地编写和维护MQTT-based的机器到机器通信代码。同时,Python还支持异步编程,这意味着可以编写高效的并发MQTT通信程序,从而提高系统的性能和响应速度。 此外,Python还可以与各种传感器、执行器和其他物联网设备进行良好的集成。开发人员可以利用Python的丰富库和工具,将MQTT通信与物联网设备的控制和监测结合起来,从而实现更加智能和灵活的物联网系统。 综上所述,通过使用Python来增强MQTT-based的机器到机器通信,可以使物联网系统变得更加灵活、高效和功能丰富。Python为开发人员提供了丰富的工具和良好的支持,从而可以更好地应对物联网系统中的各种挑战和需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值