出发点
M-T模型可以减小无监督reid任务中聚类的噪声,但是,teacher和student的自我集成容易让网络迅速收敛到一个局部最小值。因此,在网络中提出一个非对称结构:1、非对称分支能以不同方式提取特征,从而增强了在外观特征的多样性。2、提出了跨分支有监督学习,让一个分支获取另一个分支的监督信息,从而传递了不同的知识,增强了教师和学生网络之间的权重多样性。
introduction
1、指出基于聚类方法产生噪声原因:domain gap和聚类方法本身的缺陷
2、针对无监督reid问题转变为:①如何生成可靠标签;②如何处理带有噪声的标签
针对①,本文参考MMT方法产生硬标签和软标签;针对②,一个主流方法是paired network,如,co-teaching或MMT。然而,这些具有相同结构的成对模型很容易相互收敛并陷入局部最小值。当前的解决方法:co-teaching+、ATC和MMT,前两个通过选择不同训练样本或不同的初始化方法,MMT是利用不同数据增强,它们核心都是 让paired model保持divergence(具有差异性)
3、方法
对student和teacher网络中的最后一层,采用两个独立的分支,每个分支有不同的深度和池化方法,然后将两个分支结果拼接,优点:1、增加特征多样性;2、获得更好的硬聚类标签。同时,每个分支之间又可以做监督,提升了两个网络的差异性。
4、贡献
①把网络最后一层分成两个不对称分支,提升了硬标签的质量(本质上是特征的多样性得到提升)
②提出了一种新颖的解耦方法,该方法使非对称分支得到跨分支的监督,避免了成对师生网络中权重的相互收敛,提高了基于教师的软标签的质量。
方法
非对称分支
1、多分支结构在有监督网络广泛应用,目的:让每个分支具有独立性,从而获得多样性的特征。
2、动机:用不同的分支获取不一样的特征。
3、优点:在源域用这种结构训练得到一定提升,证明它可以提升特征的多样性;在目标域效果则证明它可以提供更有效的聚类硬标签。
Asymmetric Branched Mean Teaching
源域训练
两个分支的结果都做三元和交叉熵, 共4个损失
目标域训练
1、采用DBSCAN聚类方法,聚类特征为teacher网络的两个分支的拼接结果
2、对于UDA采用的是两个域共同输入;对于完全无监督,只输入目标域。
3、对每个分支的分类器,用聚类结果的聚类中心归一化特征来初始化分类器(就是自己代码中的copy_),给了个名字——动态分类器,因为每次聚类的类别数目不同。
4、提出基于teacher的跨分支软标签——把teacher的不同分支结果作为student不同分支结果的软标签。
MT结构的耦合问题
1、作者认为自己的方法能在每次训练都让student和teacher学到更多不一样的特征,从而防止两个网络易于互相耦合的情况。
2、实验证明:计算了MMT结构的teacher网络之间(teacher的两个分支之间)特征欧氏距离,以及teacher和student之间的距离,距离越大,说明差异性/多样性越大。
个人理解
1、它本质上还是只用了全局特征,只是把最后一层改成两个全局特征分支,然后在不同分支之间做损失
2、它的出发点包装的很好,可以学习
3、它画了三个图:M-T结构、MMT结构、自己的结构,用于说明MT结构的问题——耦合问题,两个网络容易收敛到对方,因此需要探究多样化问题。