Enhancing Diversity in Teacher-Student Networks via Asymmetric branches for Unsupervised reid论文解读

该博客探讨了在无监督行人重识别(ReID)任务中,如何通过非对称分支结构和跨分支学习避免网络快速收敛到局部最小值。作者提出的方法包括在teacher和student网络的最后一层引入两个不同深度和池化方法的独立分支,以增加特征多样性,并通过动态分类器和跨分支软标签传递不同知识,提高标签质量。实验表明,这种方法能有效提升无监督ReID的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

收录于WAVC2021
论文地址:https://openaccess.thecvf.com/content/WACV2021/papers/Chen_Enhancing_Diversity_in_Teacher-Student_Networks_via_Asymmetric_Branches_for_Unsupervised_WACV_2021_paper.pdf

出发点

M-T模型可以减小无监督reid任务中聚类的噪声,但是,teacher和student的自我集成容易让网络迅速收敛到一个局部最小值。因此,在网络中提出一个非对称结构:1、非对称分支能以不同方式提取特征,从而增强了在外观特征的多样性。2、提出了跨分支有监督学习,让一个分支获取另一个分支的监督信息,从而传递了不同的知识,增强了教师和学生网络之间的权重多样性。

introduction

1、指出基于聚类方法产生噪声原因:domain gap和聚类方法本身的缺陷

2、针对无监督reid问题转变为:①如何生成可靠标签;②如何处理带有噪声的标签

针对①,本文参考MMT方法产生硬标签和软标签;针对②,一个主流方法是paired network,如,co-teaching或MMT。然而,这些具有相同结构的成对模型很容易相互收敛并陷入局部最小值。当前的解决方法:co-teaching+、ATC和MMT,前两个通过选择不同训练样本或不同的初始化方法,MMT是利用不同数据增强,它们核心都是 让paired model保持divergence(具有差异性)

3、方法

对student和teacher网络中的最后一层,采用两个独立的分支,每个分支有不同的深度和池化方法,然后将两个分支结果拼接,优点:1、增加特征多样性;2、获得更好的硬聚类标签。同时,每个分支之间又可以做监督,提升了两个网络的差异性。

4、贡献

①把网络最后一层分成两个不对称分支,提升了硬标签的质量(本质上是特征的多样性得到提升)

②提出了一种新颖的解耦方法,该方法使非对称分支得到跨分支的监督,避免了成对师生网络中权重的相互收敛,提高了基于教师的软标签的质量

方法

非对称分支

1、多分支结构在有监督网络广泛应用,目的:让每个分支具有独立性,从而获得多样性的特征。

2、动机:用不同的分支获取不一样的特征。

在这里插入图片描述

3、优点:在源域用这种结构训练得到一定提升,证明它可以提升特征的多样性;在目标域效果则证明它可以提供更有效的聚类硬标签。

Asymmetric Branched Mean Teaching
源域训练

两个分支的结果都做三元和交叉熵, 共4个损失

目标域训练

1、采用DBSCAN聚类方法,聚类特征为teacher网络的两个分支的拼接结果

2、对于UDA采用的是两个域共同输入;对于完全无监督,只输入目标域。

在这里插入图片描述

3、对每个分支的分类器,用聚类结果的聚类中心归一化特征来初始化分类器(就是自己代码中的copy_),给了个名字——动态分类器,因为每次聚类的类别数目不同。

4、提出基于teacher的跨分支软标签——把teacher的不同分支结果作为student不同分支结果的软标签。

MT结构的耦合问题

1、作者认为自己的方法能在每次训练都让student和teacher学到更多不一样的特征,从而防止两个网络易于互相耦合的情况。

2、实验证明:计算了MMT结构的teacher网络之间(teacher的两个分支之间)特征欧氏距离,以及teacher和student之间的距离,距离越大,说明差异性/多样性越大。

在这里插入图片描述

个人理解

1、它本质上还是只用了全局特征,只是把最后一层改成两个全局特征分支,然后在不同分支之间做损失

2、它的出发点包装的很好,可以学习

3、它画了三个图:M-T结构、MMT结构、自己的结构,用于说明MT结构的问题——耦合问题,两个网络容易收敛到对方,因此需要探究多样化问题。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值