RGB-IR Cross-modality Person ReID based on Teacher-Student GAN Model
简述:
Reid的关键挑战是不同模式下特征的跨模态差异。为了解决这一挑战,我们提出了一种基于不同域的师生模型(TS-GAN)。
模型:
1.首先,GAN部分,仅采用了RGB生成IR的分支,但IR生成RGB用于辅助训练后期没有用到:
(使用L1范数,因为它能比L2范数在图像边缘获得更好的生成性能)
2.Backbone(红色部分)将Res50分为前3层(图中FEs)和后2层(图中LEs),ranking loss和 ID loss分别作用于GAP后的第一层latent vector和最后