2020 Arxiv之跨模态Reid:RGB-IR Cross-modality Person ReID based on Teacher-Student GAN Model

该研究针对跨模态行人重识别(ReID)问题,提出了一种基于教师-学生GAN模型的解决方案。通过RGB生成IR的分支,解决了不同模态特征差异的挑战。实验表明,即使在没有颜色信息的情况下,模型也能实现高精度的Rank-1识别率。文章还探讨了重新排序re-ranking技术的应用,以提高匹配准确性。
摘要由CSDN通过智能技术生成

RGB-IR Cross-modality Person ReID based on Teacher-Student GAN Model
简述
Reid的关键挑战是不同模式下特征的跨模态差异。为了解决这一挑战,我们提出了一种基于不同域的师生模型(TS-GAN)。
模型
在这里插入图片描述
1.首先,GAN部分,仅采用了RGB生成IR的分支,但IR生成RGB用于辅助训练后期没有用到:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(使用L1范数,因为它能比L2范数在图像边缘获得更好的生成性能)
2.Backbone(红色部分)将Res50分为前3层(图中FEs)和后2层(图中LEs),ranking loss和 ID loss分别作用于GAP后的第一层latent vector和最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值