
吴恩达深度学习
文章平均质量分 68
CoreJT
中科院自动化所在读直博生,感兴趣的研究方向:文本分类、情感分析、机器阅读理解与问答系统以及对话系统。
展开
-
吴恩达深度学习 | (28) 序列模型专项课程第三周编程作业
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。完整代码(中文翻译版带答案)目录1.实验综述2.加载必要的包3.把人类可读日期转换为机器可读日期4.神经机器翻译(with Attention)5.可视化Attention6.总结1.实验综述2.加载必要的包from ker...原创 2019-02-20 19:34:50 · 1030 阅读 · 0 评论 -
吴恩达深度学习 | (27) 序列模型专项第三周学习笔记
课程视频第三周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第五部分序列模型专项的第三周课程:序列模型和注意力机制。目录1. 多样的Seq2Seq结构2. 选择最可能的句子3. 集束搜索4. 改进集束搜索5. 集束搜索的误差分析6. Bleu得分7. 注意力模型直观理解8. 语音识别9. 触发字检测1. 多样的Seq2...原创 2019-12-06 21:59:00 · 898 阅读 · 0 评论 -
吴恩达深度学习 | (26) 序列模型专项课程第二周编程作业实验2
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。完整代码(中文翻译版带答案)目录1.实验综述2.导入必要的包3.Baseline模型:Emojifier-V14.Emojifier-V2:基于Keras使用LSTM1.实验综述2.导入必要的包import numpy as n...原创 2019-02-18 14:13:10 · 2071 阅读 · 0 评论 -
吴恩达深度学习 | (25) 序列模型专项课程第二周编程作业实验1
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。完整代码(中文翻译版带答案)目录1.实验综述2.加载必要的包3.余弦相似度4.单词类比任务5.消除词向量的偏差(选做)1.实验综述2.加载必要的包import numpy as npfrom w2v_utils import ...原创 2019-02-15 19:24:29 · 824 阅读 · 0 评论 -
吴恩达深度学习 | (24) 序列模型专项第二周学习笔记
课程视频吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第五部分序列模型专项的第二周课程:自然语言处理与词嵌入。目录1. 词汇表征2. 使用词嵌入3. 词嵌入的特性4. 嵌入矩阵5. 学习词嵌入6. Word2Vec7. 负采样8. GloVe词向量9. 情感分类10 . 词嵌入除偏1. 词汇表征上周我们学习了RNN、GRU单元和L...原创 2019-12-06 12:15:28 · 1136 阅读 · 0 评论 -
吴恩达深度学习 | (23) 序列模型专项课程第一周编程作业实验3
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。完整代码(中文翻译版带答案)目录1.实验综述2.导入必要的包3.问题描述4.构建模型5.生成音乐6.总结1.实验综述2.导入必要的包from __future__ import print_functionimpo...原创 2019-02-21 20:16:16 · 2073 阅读 · 2 评论 -
吴恩达深度学习 | (22) 序列模型专项课程第一周编程作业实验2
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本次实验中我们将使用NumPy编写一个RNN模型,来构建一个字符级的语言模型,来生成恐龙的名字。完整代码(中文翻译版带答案)目录1.实验综述2.导入必要的包3. 数据集和模型结构4.模型的构建块5.构建语言模型6.结论1.实验综述...原创 2019-02-22 12:55:05 · 1165 阅读 · 1 评论 -
吴恩达深度学习 | (21) 序列模型专项课程第一周编程作业实验1
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本次实验中我们将使用NumPy一步步构建一个朴素RNN网络和LSTM网络。完整代码(中文翻译版带答案)目录1.实验综述2.导入必要的包3.朴素(基础)RNN单元的前行传播4.LSTM(Long Short-Term Memory)网络5.RNN...原创 2019-02-22 10:19:05 · 956 阅读 · 0 评论 -
吴恩达深度学习 | (20) 序列模型专项课程第一周学习笔记
课程视频第一周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第五部分序列模型专项的第一周课程:循环序列模型。目录1. 为什么选择序列模型?2. 数学符号3. 循环神经网络模型4. 通过时间的反向传播5. 不同类型的循环神经网络6. 语言模型和序列生成7. 对新序列采样8. 循环神经网络的梯度消失9. GRU单元10. 长短期记忆L...原创 2019-12-05 17:20:56 · 1418 阅读 · 0 评论 -
吴恩达深度学习 | (19) 卷积神经网络专项课程第二周编程作业
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周的实验包括两个小实验:实验1主要介绍了一种更高级的深度学习框架Keras的一些用法,并使用Keras构建了一个简单的卷积神经网络,完成图像2分类任务,相比于Tensorflow,Keras是一种更高级别的抽象,用法相对来说更简单方便,开发效率非常高。虽然Keras具有很...原创 2018-12-26 23:17:57 · 3231 阅读 · 1 评论 -
吴恩达深度学习 | (18) 卷积神经网络专项课程第二周学习笔记
课程视频第二周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第四部分卷积神经网络专项的第二周课程:深度卷积网络:实例探究。目录1. 为什么要进行实例探究2. 经典网络3. 残差网络(ResNets)4. 残差网络为什么有用?5. 网络中的网络以及1*1卷积6. 谷歌Inception网络简介7. Inception网络8. 使用开源的实现...原创 2019-12-04 17:23:54 · 3402 阅读 · 0 评论 -
吴恩达深度学习 | (17) 卷积神经网络专项课程第一周编程作业
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周的实验包括两个小实验:实验1逐步构建CNN,使用NumPy手写实现卷积神经网络的基本构件,包括卷积层和池化层的前向/反向传播过程,通过纯手写实现,可以更深入的了解CNN的机制和原理;实验2是CNN的应用,使用Tensorflow构建一个简单的卷积神经网络模型,实现图像的...原创 2018-12-25 23:10:06 · 6134 阅读 · 1 评论 -
吴恩达深度学习 | (16) 卷积神经网络专项课程第一周学习笔记
课程视频第一周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第四部分卷积神经网络专项的第一周课程:卷积神经网络。目录1. 计算机视觉2. 边缘检测示例3. 更多边缘检测内容4. Padding5. 卷积步长6. 三维卷积7. 单层卷积网络8. 简单卷积网络示例9. 池化层10. 卷积神经网络示例11. 为什么使用卷积?1....原创 2019-12-04 13:01:47 · 1450 阅读 · 0 评论 -
吴恩达深度学习 | (15) 结构化机器学习项目专项课程第二周学习笔记
课程视频第二周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第三部分结构化机器学习项目专项的第二周课程:机器学习(ML)策略(2) 。1. 进行误差分析如果你希望让学习算法能够胜任人类能做的任务,但你的学习算法还 没有达到人类的表现,那么人工检查一下你的算法犯的错误也许可以让你了解接下来应该做 什么。这个过程称为错误分析,我们从一个例子开始讲吧。...原创 2019-12-03 14:54:18 · 1523 阅读 · 0 评论 -
吴恩达深度学习 | (14) 结构化机器学习项目专项课程第一周学习笔记
课程视频第一周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第三部分结构化机器学习项目专项的第一周课程:机器学习(ML)策略(1) 。目录1. 为什么是ML策略?2. 正交化3. 单一数字评估指标4. 满足和优化指标5. 训练/开发/测试集的划分6. 开发集和测试集的大小7. 什么时候该改变开发/测试集和指标?8. 为什么是人的表现?...原创 2019-11-19 20:14:52 · 760 阅读 · 0 评论 -
吴恩达深度学习 | (13) 改善深层神经网络专项课程第三周编程作业
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周的实验主要是熟悉一下深度学习框架Tensorflow的使用,并用Tensorflow搭建一个简单的3层神经网络完成多分类。之前我们学习了很多正则化(dropout,L2等)和加速模型训练(Adam,Batch Norm,Momentum,mini-batch等)的技术,...原创 2018-12-19 18:54:40 · 662 阅读 · 0 评论 -
吴恩达深度学习 | (12) 改善深层神经网络专项课程第三周学习笔记
课程视频第三周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第二部分改善深层神经网络专项的第三周课程:超参数调试、Batch Normalization和深度学习框架。目录1.调试处理2.为超参数选择合适的范围3.超参数训练的实践 Pandas vs. Caviar4.正则化网络的激活函数5.将Batch Norm拟合进网络6.Batch ...原创 2018-12-18 13:26:55 · 1407 阅读 · 1 评论 -
吴恩达深度学习 | (11) 改善深层神经网络专项课程第二周编程作业
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周实验都基于一个3层神经网络模型(模型已经帮助你实现好了)进行演示。使用三种不同的优化算法mini-batch GD,mini-batch with Momentum,mini-batch with Adam对模型进行训练,直观感受三种优化算法的速度和效果,体会一个好的优...原创 2018-12-15 14:51:48 · 1012 阅读 · 6 评论 -
吴恩达深度学习 | (10) 改善深层神经网络专项课程第二周学习笔记
课程视频第二周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第二部分改善深层神经网络专项的第二周课程:优化算法。本周所学习的优化算法,会使你的神经网络运行的更快。之前提到过机器学习是一个依赖经验的过程,伴随着大量的迭代,你需要训练很多不同的模型(不同的超参数选择),才能找到最合适的那一个,因此优化算法能够帮助你快速训练模型。现在深度学习并没有在大数据领域发挥最大的效果,我们...原创 2018-12-14 19:52:04 · 1043 阅读 · 0 评论 -
吴恩达深度学习 | (9) 改善深层神经网络专项课程第一周编程作业
吴恩达深度学习专项课程的所有实验均采用iPython Notebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周包含三个实验,这三个实验都基于一个3层神经网络模型(模型已经帮助你实现好了)进行演示。实验1要求实现三种不同的权重参数初始化方式,通过对其效果的比较,说明参数初始化的重要性,选择一个最好的初始化方式;实验2要求实现正则化方法,包括L2正则化和dropout,比较使用/不...原创 2018-12-12 21:14:51 · 1411 阅读 · 0 评论 -
吴恩达深度学习 | (8) 改善深层神经网络专项课程第一周学习笔记
课程视频第一周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第二部分改善深层神经网络专项的第一周课程:深度学习的实用层面。本周主要讲解如何配置训练/验证/测试集,如何分析方差和偏差,如何处理高偏差或高方差或高偏差和高方差共存的问题,以及如何在神经网络中应用不同形式的正则化,如L2正则化、dropout等,加快神经网络训练的技巧,最后介绍了梯度检验。目录1.训练/开发...原创 2018-12-11 15:20:15 · 1557 阅读 · 0 评论 -
吴恩达深度学习 | (7) 神经网络与深度学习专项课程第四周编程作业
吴恩达深度学习专项课程的所有实验均采用JupyterNotebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周的实验是实现一个L层的神经网络进行图片2分类,这也是深度学习和神经网络专项课程的最后一个实验,实验非常长,需要花一些时间。下一个专项是改善深层神经网络,还会学习一些更高级的优化方法、mini-batch、正则化、dropout、多分类等内容,介时还将实现更强大的模型。...原创 2018-12-05 16:51:31 · 2230 阅读 · 0 评论 -
吴恩达深度学习 | (6) 神经网络与深度学习专项课程第四周学习笔记
课程视频课程PPT吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第一部分神经网络和深度学习专项的第四周课程:深层神经网络,深层指的是多隐藏层神经网络。截止目前我们已经学习了单隐层神经网络和逻辑回归的前向/反向传播,向量化以及随机初始化参数的重要性等内容。本周我们会把之前学的内容组合起来,构建深层神经网络。目录1.深层神经网络2.深层网络中的前向传播3.核对矩阵的维数...原创 2018-12-04 17:35:21 · 1180 阅读 · 0 评论 -
吴恩达深度学习 | (5) 神经网络与深度学习专项课程第三周编程作业
吴恩达深度学习专项课程的所有实验均采用JupyterNotebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周的实验主要是训练一个单隐层神经网络,进行2分类任务。采用的数据集都是平面数据集(2维数据集,输入特征数=2)。目录1.实验综述2.导入必要的包3.数据集4.简单逻辑回归5.神经网络模型6.在其他数据集上进行尝试1.实验综述2...原创 2018-12-03 14:41:54 · 3038 阅读 · 4 评论 -
吴恩达深度学习 | (4) 神经网络与深度学习专项课程第三周学习笔记
课程视频第三周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第一部分神经网络和深度学习专项的第三周课程:浅层神经网络,浅层指的是单隐藏层神经网络。本周课程主要学习单隐层神经网络的结构、符号表示、前向/反向传播及向量化实现、浅层神经网络的梯度下降法、常用的激活函数以及参数初始化的技巧。目录1.神经网络概览2.神经网络表示3.计算神经网络的输出4.多个例子中的向...原创 2018-12-02 18:15:55 · 2489 阅读 · 0 评论 -
吴恩达深度学习 | (3) 神经网络与深度学习专项课程第二周编程作业
吴恩达深度学习专项课程的所有实验均采用JupyterNotebooks实现,不熟悉的朋友可以提前使用一下Notebooks。本周的编程作业主要包含两部分:第一部分Python基础,旨在通过该实验熟悉Python Numpy的基本操作,函数的用法、向量矩阵的操作以及理解NumPy中的广播,最后能够编写出向量化的代码,为之后的实验打好基础;第2部分,用神经网络的思维来实现逻辑回归算法,包括构建学习算...原创 2018-12-01 13:55:10 · 5514 阅读 · 3 评论 -
吴恩达深度学习 | (2) 神经网络与深度学习专项课程第二周学习笔记
课程视频第二周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第一部分神经网络和深度学习专项的第二周课程:神经网络基础。由于逻辑回归算法可以看作是一个单神经元(单层)的网络结构,为了使大家能更好的理解神经网络算法,本周的课程从逻辑回归算法出发,通过计算图讲解前向传播和反向传播的过程,导数计算的链式法则以及使用Python进行向量化编程(加快速度,告别显式for循环)的技巧。目...原创 2018-11-30 14:36:00 · 1004 阅读 · 0 评论 -
吴恩达深度学习 | (1) 神经网络与深度学习专项课程第一周学习笔记
课程视频第一周PPT汇总吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第一部分神经网络和深度学习专项的第一周课程:深度学习概论。本周内容比较简单,大多是一些介绍性的内容。通过本周的学习,你将会了解什么是神经网络?用神经网络进行监督学习以及为什么深度学习会兴起?目录1.什么是神经网络?2.用神经网络进行监督学习3.为什么深度学习会兴起?1.什么是神经网络?首先看...原创 2018-11-29 12:47:47 · 983 阅读 · 0 评论