
元学习与小样本学习
元学习与小样本学习(Few-shot Learning)相关的一些基础知识、前沿动态(论文)、代码等内容。
CoreJT
中科院自动化所在读直博生,感兴趣的研究方向:文本分类、情感分析、机器阅读理解与问答系统以及对话系统。
展开
-
元学习与小样本学习 | (3) 基于小样本学习的意图识别冷启动
原文地址论文下载(提取码:nrh8)随着深度学习和自然语言处理技术的发展,很多公司都在致力于发展人机对话系统,希望人和机器之间能够通过自然语言进行交互。笔者所在的阿里巴巴小蜜北京团队打造了一个智能对话开发平台——Dialog Studio,以赋能第三方开发者来开发各自业务场景中的任务型对话,而其中一个重要功能就是对意图进行分类。大量平台用户在创建一个新对话任务时,并没有大量标注数据,每个意图...转载 2020-03-03 13:23:20 · 5213 阅读 · 0 评论 -
元学习与小样本学习 | (2) Few-shot Learning 综述
原文地址分类非常常见,但如果每个类只有几个标注样本,怎么办呢?笔者所在的阿里巴巴小蜜北京团队就面临这个挑战。我们打造了一个智能对话开发平台——Dialog Studio,以赋能第三方开发者来开发各自业务场景中的任务型对话,其中一个重要功能就是对意图进行分类。大量平台用户在创建一个新对话任务时,并没有大量标注数据,每个意图往往只有几个或十几个样本。面对这类问题,有一个专门的机器学习分支——Fe...转载 2020-03-02 21:10:48 · 3483 阅读 · 0 评论 -
元学习与小样本学习 | (1) 元学习(Meta Learning)概述
原文地址人工智能的一个基本问题是它无法像人类一样高效地学习。许多深度学习分类器显示了超人的表现,但需要数百万个训练样本。知识不共享,并且每个任务都独立于其他任务进行训练。在本文中,我们将该研究问题,然后检查一些建议的解决方案。问题与人类相比,大多数最先进的深度学习方法都有两个关键的弱点:样本效率:深度学习的样本效率很差。例如,为了识别数字,我们通常每个数字至少需要6000个样本。可移植...转载 2020-02-22 19:48:25 · 5608 阅读 · 0 评论