机器阅读理解
机器阅读理解相关的一些基础知识、前沿动态(论文)、代码等内容。
CoreJT
中科院自动化所在读直博生,感兴趣的研究方向:文本分类、情感分析、机器阅读理解与问答系统以及对话系统。
展开
-
机器阅读理解 | (5) 用MRC框架解决各类NLP任务
原文地址详解如何充分发挥先验信息优势,用MRC框架解决各类NLP任务本文将讨论如何将命名体识别、指代消解、关系抽取、文本分类等 NLP 任务转化为 MRC(机器阅读理解)任务,利用 MRC 框架的 query 所蕴含先验信息的优势,不但由此获得效果上的显著提高,还将赋予模型 Domain Adaptation、Zero-shot Learning 等多方面的能力。让我们先梳理一下 MRC 的基础知识。文章目录1. 什么是MRC?2. MRC框架尝试解决的NLP任务MRC框架解决NER任务2.2 M转载 2020-09-29 11:22:41 · 3637 阅读 · 1 评论 -
机器阅读理解 | (4) QAInfomax: Learning Robust Question Answering System by Mutual Information Maximization
本篇博客中我将分享一篇EMNLP2019与文本问答系统鲁棒性相关的论文:《QAInfomax: Learning Robust Question Answering System by Mutual Information Maximization》。论文下载连接开源代码(添加注释;提取码:nq7f)摘要标准的准确率指标表明现在的阅读理解系统在很多数据集上都取得了很好的表现。然而,现有系统...原创 2020-04-11 21:43:06 · 862 阅读 · 0 评论 -
机器阅读理解 | (3) 机器阅读理解简述
原文地址机器阅读理解技术即机器自动基于给定的文本回答用户所提出的问题的技术[1],近几年已经成为了研究热点之一。阅读理解大致可以分为四个任务,即填空型阅读理解任务、选择型阅读理解任务、片段抽取型阅读理解任务以及自由格式阅读理解任务。随着以BERT为代表的预训练模型的发展,四种阅读理解任务都有着飞速的发展,主要体现为从关注限定文本到结合外部知识,从关注特定片段到对上下文的全面理解。本文对上述几种主...转载 2020-03-10 21:09:06 · 5034 阅读 · 0 评论 -
机器阅读理解 | (2) 文本问答概述
随着互联网的普及和搜索引擎的发展,人们可以越来越方便地从海量信息中检索到大量相关的文本。 而海量的信息也催生了文本问答技术的发展,从而可以帮助人们更快速更精确地找到用户所需要的信息片段。 在本节中,我们定义文本问答是从互联网或者线下收集的文本集合中,找到可以回答用户问题的文字片段作为答案的任务。目录1. 文本问答整体框架2. 答案句子选择3. 机器阅读理解4. SQuAD1.1...原创 2020-02-05 13:03:57 · 2492 阅读 · 0 评论 -
机器阅读理解 | (1) 智能问答概述
智能问答(QuestionAnswer,QA)旨在为用户提出的自然语言问题自动提供答案,得益于大数据、硬件计算能力提高(GPU、TPU)以及自然语言处理和深度学习技术的进步,近来年取得了飞速发展,其应用场景(如搜索引擎、智能语音助手)更加贴近人们的日常生活。目录一. 历史沿革1. 受限领域问答2. 开放领域问答二、自然语言问题分类三、QA任务分类1. 知识图谱问答...原创 2020-02-04 21:27:59 · 6207 阅读 · 1 评论